K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

Đáp án C

u 81 = u 2 + 79 d = 5 + 79 . 3 = 242

11 tháng 6 2017

Đáp án C

u 81 = u 2 + 79 d = 5 + 79.3 = 242

23 tháng 5 2017

Đáp án là  C

u 1 = u 2 − d = 2 ;    u 81 = u 1 + 80 d = 242.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

Chọn đáp án A.

27 tháng 10 2023

Theo đề, ta có: \(S_n=3003\)

=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)

=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)

=>n(n+1)=6006

=>n^2+n-6006=0

=>(n-77)(n+78)=0

=>n=77(nhận) hoặc n=-78(loại)

Vậy: n=77

1 tháng 4 2022

Input: dãy A và N phần tử

Output: Là cấp số cộng hoặc không là cấp số cộng

Thuật toán:

- Bước 1: Nhập N và dãy A1,A2,...,An

- Bước 2: d←A2-A1; i←2;

-Bước 3: Nếu i>N thì in ra kết quả là cấp số cộng rồi kết thúc

- Bước 4: Nếu Ai+1-Ai khác d thì chuyền xuống bước 6

- Bước 5: i←i+1, quay lại bước 3

- Bước 6: Thông báo không phải là cấp số cộng rồi kết thúc

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 =  - 1 - 4n\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) =  - 1 - 4n - 3 + 4n =  - 4\)

Vậy dãy số là cấp số cộng có công sai \(d =  - 4\).

b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)

Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).

c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)

Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.

d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} =  - \frac{5}{3}\)

Vậy dãy số là cấp số cộng có công sai \(d =  - \frac{5}{3}\).

25 tháng 12 2018

2 tháng 3 2017

Có 

Chọn C.