Phân tích thành nhân tử 4 x 2 − y 2 + 4x + 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
______
\(4x^4y^4+1\)
\(=4x^4y^4+4x^2y^2+1-4x^2y^2\)
\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)
______
\(x^4+3x^2+4\)
\(=x^4+x^3+2x^2-x^3-x^2-2x+2x^2+2x+4\)
\(=\left(x^4+x^3+2x^2\right)-\left(x^3+x^2+2x\right)+\left(2x^2+2x+4\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)
______
\(x^2+3xy+2y^2\)
\(=x^2+xy+2xy+2y^2\)
\(=x\left(x+y\right)+2y\left(x+y\right)\)
\(=\left(x+2y\right)\left(x+y\right)\)
\(16-x^2\)
\(=\left(4-x\right)\left(4+x\right)\)
\(---\)
\(16-3x+1^2\) (kt lại đề bài nhé)
\(x^4y^4+4x^2y^2+4\)
\(=\left[\left(xy\right)^2\right]^2+2\cdot\left(xy\right)^2\cdot2+2^2\)
\(=\left[\left(xy\right)^2+2\right]^2=\left(x^2y^2+2\right)^2\)
\(---\)
\(y^2-4y+4-x^2\)
\(=y^2-2\cdot y\cdot2+2^2-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)
x² - 4x - y² + 4
= (x² - 4x + 4) - y²
= (x - 2)² - y²
= (x - y - 2)(x + y - 2)
Phân tích thành nhân tử:
x^2 - y^2 - 4x + 4
=(x^2-4x+4)-y^2
=(x-2)^2-y^2
=(x-2+y)(x-2-y)
4 x 2 − y 2 + 4x + 1
= (4 x 2 + 4x + 1) − y 2 = 2 x + 1 2 − y 2 = (2x + 1 + y)(2x + 1 − y)