Chứng tỏ rằng: 4x – x 2 – 5 < 0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
a)x2-6x+10
Ta có:x2-6x+10=x2-2.3x+9+1
=(x-3)2+1
Vì (x-3)2\(\ge\)0
Suy ra:(x-3)2+1\(\ge\)1(đpcm)
b)4x-x2-5
Ta có:4x-x2-5=-(x2-4x+5)
=-(x2-2.2x+4)-1
=-1-(x-2)2
Vì -(x-2)2\(\le\)0
Suy ra:-1-(x-2)2\(\le\)-1(đpcm)
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)
hay \(x^2-6x+10>0\left(đpcm\right)\)
b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)
hay \(4x-x^2-5< 0\left(đpcm\right)\)
a) Ta có:
\(x^2-6x+10=x^2-6x+9+1\) 1
\(=\left(x-3\right)^2+1\)
vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0
\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\)
=>đpcm
b)
\(4x-x^2-5=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\)
vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0
=>..........
vậy...
hc tốt
Giải:
a) \(x^2-6x+10\)
\(=x^2+6x+9+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
Nên \(\left(x+3\right)^2+1\ge1\forall x\)
Vậy \(\left(x+3\right)^2+1>0\forall x\).
b) \(4x-x^2-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x+2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
Nên \(-\left(x+2\right)^2-1\le-1\forall x\)
Vậy \(-\left(x+2\right)^2-1< 0\forall x\).
Chúc bạn học tốt!
\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)
\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)
a): Ta có:
x2 - 6x +10
= x2 - 3x -3x + 10
=x(x-3) -3x +9 +1
= x(x-3) - 3(x-3) + 1
=(x-3)(x-3) + 1
= (x-3)2 +1
Vì (x-3)2 lớn hơn hoặc bằng 0 với mọi x\(\in\) R nên:
(x-3)2 +1 lớn hơn hoặc bằng 1 với mọi x thuộc R
=> (x-3)2 +1 > 0 với mọi x
4x-x^2-5 = -(x^2-4x)-5
\(\Rightarrow\) -(x^2-2x.2+4-4)-5 = -(x-2)^2+4-5 = -(x-2)^2-1
Vì -(x-2)^2 ≤0 vs moi x nên -(x-2)^2-1<0 vs moi x
Vậy 4x-x^2-5<0 với mọi x
Đúng thì tick nha
\(4x-x^2-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< -1< 0\forall x\)
\(4x-x^2-5< 0\)
\(=\left(-x^2-4x\right)-5=-\left(x^2-2x.2+4-4\right)-5=-\left(x-2\right)^2+4-5\)
\(=-\left(x^2-2x\right)-1\)
Vì \(-\left(x^2-2x\right)\le0\)với mọi x nên \(-\left(x-2\right)^2-1< 0\)với mọi x
Vậy \(4x-x^2-5< 0\)với mọi x ( đpcm )
4x - x2 - 5 < 0 \(\forall\)x
Ta có : 4x - x2 - 5
= -x2 + 4x - 5
= - ( x2 - 4x + 5 )
= - ( x2 - 2.x.2 + 22 - 1 )
= - [( x - 2 )2 - 1 ]
Vì - ( x - 2 ) \(\le\)0 \(\forall\)x
\(\Leftrightarrow\)- ( x - 2 ) - 1 \(\le\)0 \(\forall\)x
Vậy .....
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-x^2+4x-2^2-1=-\left(x^2-2.2x+2^2\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) nên \(-\left(x-2\right)^2-1< 0\) với mọi x
x2-6x+10
=x2-6x+9+1
=(x-3)2+1>0 với mọi x (vì (x-3)2\(\ge\)0 với mọi x)
4x-x2-5
= -x2+4x-4-1
= -(x2-4x+4)-1
= -(x-2)2-1<0 với mọi x(vì -(x-2)2<0 với mọi x)
Ta có: 4x – x 2 – 5 = -( x 2 – 4x + 4) – 1 = - x - 2 2 -1
Vì x - 2 2 ≥ 0 với mọi x nên – x - 2 2 ≤ 0 với mọi x.
Suy ra: - x - 2 2 -1 ≤ -1 với mọi x
Vậy 4x – x 2 – 5 < 0 với mọi x.(đpcm)