K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

28 tháng 10 2017

21 tháng 2 2019

Chọn A

Đánh số các đỉnh là  A 1 , A 2 , … , A 100

Xét đường chéo A 1 A 51 của đa giác là đường kính của đường tròn ngoại tiếp đa giác đều chia đường tròn ra làm 2 phần mỗi phần cs 49 điểm từ A 2   đ ế n   A 50   v à   A 52   đ ế n   A 100 .

Khi đó, mỗi đa giác có dạng A l A i A j là tam giác tù nếu A i và A j  cùng nằm trên nửa đường tròn chứa điểm A 1 tính theo chiều kin đồng hồ nên A i ,   A j là hai điểm tùy ý được lấy từ 49 điểm A 2 ,   A 3   đ ế n   A 50 .

Vậy có 1176 tam giác tù.

Vì đa giác có 100 đỉnh nên số tam giác tù là 1176.100=117600 tam giác tù.

29 tháng 4 2019

Đáp án là C

7 tháng 6 2019

Đáp án C

+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác

Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là  C 12 3 − 12 − 8.12

Vậy kết quả là C 12 3 − 12 − 8.12 C 12 3

19 tháng 7 2018

Đáp án C

+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác

Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là C 12 3 - 12 - 12 . 8

Vậy kết quả là  C 12 3 - 12 - 12 . 8 C 12 3

SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)

Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn

=>Có 12 tam giác

Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác

=>CÓ 8*12=96 tam giác

=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)

13 tháng 1 2021

Chọn 3 đỉnh bất kỳ: \(n\left(\Omega\right)=C^3_n\left(cach\right)\) 

Gọi 3 đỉnh đó là A,B,C tạo thành tam giác tù =>A >90 độ => B,C<90 độ

Chọn một đỉnh là B (hoặc C): \(C^1_n=n\left(cach\right)\)

Kẻ đường kính ua B chia đường tròn thành 2 nữa, mỗi nữa sẽ có \(\dfrac{n}{2}-1\) (đỉnh của đa giác đều)

Để tạo thành tam giác tù thì A và C (hoặc A và B) phải ở cùng một nữa

Số cách chọn A và C (A và B):  \(C^2_{\dfrac{n}{2}-1}+C^2_{\dfrac{n}{2}-1}\left(cach\right)\)

\(\Rightarrow n\left(A\right)=\dfrac{1}{2}.n\left(C^2_{\dfrac{n}{2}-1}+C^2_{\dfrac{n}{2}-1}\right)\left(tam-giac-tu\right)\)

\(\Rightarrow p\left(A\right)=\dfrac{n\left(A\right)}{n(\Omega)}=...\)

Làm bừa xem đúng ko :D

4 tháng 4 2019

Chọn C.

 

 

Gọi đa giác đều là A1A2..A100 và O là tâm đường tròn ngoại tiếp tam giác đã cho.

Chọn 3 điểm bất kì ta được 1 tam giác suy ra có: C 100 3  tam giác.

Chia 100 đỉnh thành 2 phần thuộc 2 nửa đường tròn khác nhau

Bước 1: Chọn 1 đỉnh có 100 cách chọn.

Bước 2: Chọn 2 đỉnh còn lại để tạo thành 3 đỉnh của tam giác AiAjAk tù thì 2 đỉnh này phải nằm trên 1 nửa đường trò đã chia.

 Như vậy có: 100 . C 49 2  cách chọn.

Do đó xác xuất cần tìm là: 100 . C 49 2 C 100 2 = 8 11  

8 tháng 6 2019

Đáp án C

Gọi đường tròn (O) là đường tròn ngoại tiếp đa giác. Xét A là 1 đỉnh bất kỳ của đa giác,kẻ đường kính AA’ thì A’ cũng là 1 đỉnh của đa giác. Đường kính AA’ chia (O) thành 2 nửa đường tròn , với mỗi cách chọn ra 2 điểm B và C là 2 đỉnh của đa giác và cùng thuộc 1 nửa đường tròn, ta đường 1 tam giác tù ABC. Khi đó số cách chọn B và C là: 2 C 49 2  

Đa giác có 100 đỉnh nên số đường chéo là đường kính của đường tròn ngoại tiếp đa giác là 50

Do đó, số cách chọn ra 3 đỉnh để lập thành 1 tam giác tù là:  

Không gian mẫu: