K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

13 tháng 6 2020

tự kẻ hình nha

ta có AD+DE+EM=AM mà AD=DE=EM=> AM=3EM=> EM=1/3AM=> AE=2/3AM => E là trọng tâm của tam giác ABC ( khoảng cách từ đỉnh đến trọng tâm bằng 2/3 đường trung tuyến đi qua trọng tâm đó)

13 tháng 6 2020

Bài làm

Ta có: AD = DE = EM

=> 3AE = 2AM

=> \(\frac{AE}{AM}=\frac{2}{3}\)

Mà AM là đường trung tuyến của tam giác ABC.

Và \(\frac{AE}{AM}=\frac{2}{3}\)( cmt )

=> E là giao điểm của ba đường trung tuyến

Do đóm E là trọng tâm của tam giác ABC ( đpcm ) 

20 tháng 5 2017

Khi đó E là trọng tâm của tam giác ABC (khoảng cách từ đỉnh tới trọng tâm của tam giác bằng 2/3 độ dài đường trung tuyến kẻ từ đỉnh đó).

Chọn đáp án B

23 tháng 1 2019

Trên đường trung tuyến AM có AD = DE = EM nên AE = 2/3 AM.

Do khoảng cách từ trọng tâm tới một đỉnh của tam giác bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó nên E là trọng tâm của tam giác ABC. Chọn (B) Điểm E.

13 tháng 10 2017

Theo đề bài ta có AD = DE nên C thuộc MD là đường trung tuyến của tam giác AEM (1)

Mặt khác ta có BC = 2CD và BC = CM nên CM = 2CD (2)

Từ (1) và (2) suy ra C là trọng tâm của tam giác AEM.

1 tháng 4 2016
  • A B C G D M 1 2 A B C D T E 2 1

a: ΔACB cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

Xét tứ giác BGCE có

D là trung điểm chung của BC và GE

BC vuông góc GE

=>BGCE là hình thoi

=>BG=GC=CE=BE

b: Xét ΔABE và ΔACE có

AB=AC

BE=CE

AE chung

=>ΔABE=ΔACE

17 tháng 9 2018

Do AD = DE nên MD là một đường trung tuyến của tam giác AEM. Hơn nữa do

CD = 1/2 CB = 1/2 CM

Nên C là trọng tâm của tam giá AEM.

22 tháng 3 2018

Giải

a) Do AD = DE nên MD là một đường trung tuyến của tam giác AEM. Hơn nữa do

CD=12CB=12CMCD=12CB=12CM

Nên C là trọng tâm của tam giá AEM.

b) Các đường thẳng AC, EC lần lượt cắt EM, AM tại F, I. Tam giác AEM có các đường trung tuyến là AF, EI, MD. Ta có ∆ADB = ∆EDG (c.g.c) nên AB = EC

Vậy: AC=23AF;BC=CM=23MD;AB=EC=23EIAC=23AF;BC=CM=23MD;AB=EC=23EI

c) Trước tiên, theo giả thiết, ta có AD = DE nên AD=12AEAD=12AE

Gọi BP, CQ là các trung tuyến của ∆ABC.

∆BCP = ∆MCF => BP=FM=12EMBP=FM=12EM. Ta sẽ chứng minh CQ=12AMCQ=12AM

Ta có:

ΔABD=ΔECD⇒ˆBAD=ˆCED⇒AB//EC⇒ˆQAC=ˆICAΔABD=ΔECD⇒BAD^=CED^⇒AB//EC⇒QAC^=ICA^

Hai tam giác ACQ và CAI có cạnh AC chung, ˆQAC=ˆICAQAC^=ICA^;

AQ=12AB=12EC=ICAQ=12AB=12EC=IC nên chúng bằng nhau.

Vậy CQ=AI=12AMCQ=AI=12AM.

Tóm lại: AD=12AE,BP=12EM,CQ=12AM

7 tháng 3 2019

D

11 tháng 4 2021

sai rồi B chơ