K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Đáp án B

thuộc các chữ số 0,1,2,3,4,5,6,7,8,9 nên x có 10 cách chọn, y có 10 cách chọn, z có 10 cách chọn.

Vậy có 10.10.10=1000 điểm

19 tháng 12 2017

Đáp án B

P(x,y,z); x, y, z thuộc các chữ số 0,1,2,3,4,5,6,7,8,9 nên x có 10 cách chọn, y có 10 cách chọn, z có 10 cách chọn. Vậy có 10.10.10=1000 điểm

23 tháng 10 2019

Đáp án A

Phương trình mặt phẳng (ABC) là x 1 + y 3 + z 2 = 1  mà D 1 ; 3 ; - 2 ⇒ D ∈ A B C . 

Và ta thấy rằng A C ¯ = - 1 ; 0 ; 2  và B D ¯ = - 1 ; 0 ; 2  suy ra ABCD là hình bình hành.

Vậy O.ABCD là một hình chóp có đáy là hình bình hành, do đó có 5 mặt phẳng thỏa mãn yêu cầu gồm:

Ÿ Mặt phẳng đi qua trung điểm của AC,BD và song song với (SAD) hoặc (SBC). 

Ÿ Mặt phẳng đi qua trung điểm cuả AD,BC đồng thời song song với (SAC) hoặc (SBD).

Ÿ Mặt phẳng đi qua trungđiểm của OA,OB,OC,OD.

27 tháng 7 2018

Đáp án C

  A B   → = ( 1 ; - 1 ; - 3 ) ,  D C   → = ( 1 ; - 1 ; - 3 ) ,  A D   → = ( 2 ; - 4 ; - 2 ) => ABCD là hình bình hành

  A B   → . A D → . A E → = 12   ⇒ E . A B C D là hình chóp đáy hình bình hành nên các mặt phẳng cách đều 5 điểm là

+ Mặt phẳng qua 4 trung điểm của 4 cạnh bên

+ Mặt phẳng qua 4 trung điểm lần lượt là AD, EC, AD, BC

+ Mặt phẳng qua 4 trung điểm lần lượt là EC, EB, DC, AB

+ Mặt phẳng qua 4 trung điểm lần lượt là EA, EB, AD, BC

+ Mặt phẳng qua 4 trung điểm lần lượt là EA, ED, AB, DC

5 tháng 1 2018

Chọn C

Suy ra ABCD là hình bình hành.

 

=>E.ABCD là hình chóp đáy là hình bình hành nên các mặt phẳng cách đều 5 điểm là

+ Mặt phẳng qua 4 trung điểm của 4 cạnh bên.

+ Mặt phẳng qua 4 trung điểm lần lượt của ED, EC, AD, BC

+ Mặt phẳng qua 4 trung điểm lần lượt của EC, EB, DC, AB

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, EB, AD, BC.

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, ED, AB, DC.

19 tháng 9 2018

Chọn D

Gọi điểm cần tìm là M (x0y0z0)

Phương trình mặt phẳng (ABC) là: 

Phương trình mặt phẳng (BCD) là: x = 0

Phương trình mặt phẳng (CDA) là: y = 0

Phương trình mặt phẳng (DAB) là: z= 0

Ta có M cách đều 4 mặt phẳng (ABC), (CDA), (BCD), (DAB) nên:

Ta có các trường hợp sau:

Vậy có 8 điểm M thỏa mãn bài toán.

18 tháng 5 2018

 

11 tháng 7 2019

Chọn C

Ta có . Suy ra ABCD là hình bình hành.

Ta lại có 

 E. ABCD là hình chóp đáy là hình bình hành nên các mặt phẳng cách đều 5 điểm là

+ Mặt phẳng qua 4 trung điểm của 4 cạnh bên.

+ Mặt phẳng qua 4 trung điểm lần lượt của ED, EC, AD, BC.

+ Mặt phẳng qua 4 trung điểm lần lượt của EC, EB, DC, AB.

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, EB, AD, BC.

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, ED, AB, DC.

13 tháng 5 2019

Đáp án B

  A B → - 1 ; 2 ; 0 ,   A D → 1 ; - 2 ; 0 ,   A B → = - A D → ⇒ A , B , D thẳng hàng

Cứ 3 điểm không thẳng hàng cho ta một mặt phẳng

Số cách chọn 3 trong 5 điểm trên là  C 5 3 = 10

A,B,D thẳng hàng nên qua 3 điểm này không xác định được mặt phẳng

Số cách chọn 2 trong và điểm A,B,D và 1 điểm trong O và C là:  C 3 2 . C 2 1 = 6

Nếu chọn 2 trong 3 điểm A,B,D kết hợp cùng hai điểm còn lại sẽ ra một số mặt phẳng trùng nhau. Nên trường hợp này ta chỉ xác định được 2 mặt phẳng phân biệt

Vậy số mặt phẳng phân biệt đi qua 3 điểm O,A,B,C,D là: 10-1-6+2=5

4 tháng 1 2017

Đáp án B

Ta có A B → = - 1 ; 2 ; 0 A D → = 1 ; - 2 ; 0 ⇒ A B → + A D → = 0 ⇒ A , B , D  thẳng hàng

Do đó, 5 điểm O, A, B, C, D tạo thành tứ diện như hình vẽ bên

Vậy có tất cả 5 mặt phẳng cần tìm đó là:

+ Mặt phẳng (OAC) đi qua 3 điểm O, A, C.

+ Bốn mặt phẳng là các mặt bên của tứ diện O.BCD đi qua 3 điểm trong 5 điểm O, A, B, C, D.