Trong không gian Oxy cho điểm A 1 − ; 2 ; − 3 , véc-tơ u → 6 ; − 2 ; − 3 và đường thẳng d: x − 4 3 = y + 1 2 = z + 2 − 5 . Viết phương trình đường thẳng Δ đi qua A, vuông góc ới giá của u → và cắt d.
A. x − 1 2 = y + 1 − 3 = z − 3 6
B. x − 1 2 = y − 5 3 = z + 1 2
C. x − 1 1 = y + 4 − 3 = z − 5 4
D. x − 2 3 = y − 5 3 = z − 1 4
Đáp án A
Goi (P) là mặt phẳng đi qua A vuông vởi với giá của u →
⇒ P : 6 x + 1 − 2 y − 2 − 3 z + 3 = 0 ⇔ P : 6 x − 2 y − 3 z = − 1
Gọi B = P ∩ d ⇒ B 4 + 3 t ; 1 + 2 t ; − 2 − 5 t
B ∈ P ⇒ 6. 4 + 3 t − 2 1 + 2 t − 3 − 2 − 5 t = − 1 ⇔ t = − 1 ⇒ B 1 ; − 1 ; 3
Đường thẳng Δ đi qua A − 1 ; 2 ; − 3 và B 1 ; − 1 ; 3 có vtcp u Δ → = A B → = 2 ; − 3 ; 6
⇒ Δ : x − 1 2 = y + 1 − 3 = z − 3 6