K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1 2022

\(x^2-2mx-x+2m=0\)

\(\Leftrightarrow x\left(x-1\right)-2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2m\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2m\end{matrix}\right.\)

Để pt có 2 nghiệm pb trong đó có 1 nghiệm nhỏ hơn 1

\(\Rightarrow2m< 1\Rightarrow m< \dfrac{1}{2}\)

21 tháng 2 2023

2x^2  -(4m+3)x+2m^2-1=0

 

 a= 2

b = -(4m+3)

 c= 2m^2-1

Ta có: ∆=b^2-4ac

              = 〖(4m+3)〗^2-4.2.(2m^2-1)

              = 16m^2+24m+9-16m^2+8   

               = 24m +17

Để phương trình có 2 nghiệm phân biệt

=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24

Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24

https://www.youtube.com/watch?v=toNMfaR7_Ns

 

 

7 tháng 12 2021

\(1,\Leftrightarrow\Delta=64-4\left(2m+6\right)\ge0\\ \Leftrightarrow40-8m\ge0\\ \Leftrightarrow m\le5\\ 2,\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(2m-6\right)>0\\ \Leftrightarrow4m^2-8m+4-8m+24>0\\ \Leftrightarrow2\left(m^2-4m+4\right)+6>0\\ \Leftrightarrow2\left(m-2\right)^2+6>0\left(\text{luôn đúng}\right)\\ \Leftrightarrow m\in R\)

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

NV
22 tháng 1

Đặt \(cosx=t\in\left[-1;1\right]\)

\(\Rightarrow6t^2+\left(9m-7\right)t-6m+2=0\)

\(\Leftrightarrow6t^2-7t+2+9mt-6m=0\)

\(\Leftrightarrow\left(2t-1\right)\left(3t-2\right)+3m\left(3t-2\right)=0\)

\(\Leftrightarrow\left(3t-2\right)\left(2t+3m-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{2}{3}\\cosx=\dfrac{-3m+1}{2}\end{matrix}\right.\) 

(Chà tới đây mới thấy ko cần đặt ẩn phụ, nhìn con số 9m và 6m to 1 cách vô lý đã nghi nghi có gì đó bất thường trong nghiệm :D)

Pt \(cosx=\dfrac{2}{3}\) cho 1 nghiệm thuộc \(\left(0;\dfrac{\pi}{2}\right)\)

Để pt có 3 nghiệm pb thì \(cosx=\dfrac{-3m+1}{2}\) cho 2 nghiệm pb thuộc khoảng đã cho

Từ đường tròn lượng giác ta dễ dàng suy ra: \(-1< \dfrac{-2m+1}{2}< 0\)

 

22 tháng 1

Anh ơi! Em thấy đặt ẩn phụ gọn hơn so với cosx. Theo anh không cần đặt ẩn phụ sẽ như nào vậy ạ anh! 

29 tháng 12 2020

Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3 

Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3 

Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1 

t f(t) +∞ +∞ -∞ +∞ m -m - 1 2 3 y = 0 3 y = 0 8-6m 8-6m Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi 

8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)

Nếu m < 3, yêu cầu bài toán thỏa mãn khi 

8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))

Nếu m = 3 thì phương trình trở thành 

t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)

tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán 

Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)

Đề sai rồi bạn

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ