Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi cạnh a, A B C ⏜ = 60 0 và thể tích bằng 3 a 3 . Tính chiều cao h của hình hộp đã cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∆ A O D vuông tại O
⇒ O A = A D 2 - O D 2 = a 2 - 3 a 2 2 = a 2 ⇒ A H = 1 2 A O = a 4 ;
AC=2.AO=a và S A B C D = 1 2 . A C . B D
= 1 2 a . a . 3 = a 2 3 2
Do AA'//CC' nên
∠ ( A A ' ; ( A B C D ) ) = ∠ ( C C ' ; A B C D ) = 60 °
Do
A H ⊥ ( A B C D ) ⇒ ∠ ( A A ' ; ( A B C D ) ) = ∠ ( A A ' ; A H ) = ∠ A ' A H = 60 °
∆ A ' A H vuông tại
H ⇒ A ' H = A H . tan A ' A H = a 4 . tan 60 ° = a 3 4
Thể tích khối hộp là V = S A B C D . A ' H
= a 2 3 2 . a 3 4 = 3 a 3 8
Chọn đáp án A.
a) Gọi \(O = AC \cap B{\rm{D}}\)
\(ABCD\) là hình thoi \( \Rightarrow AC \bot B{\rm{D}} \Rightarrow AO \bot B{\rm{D}}\)
\(AA' \bot \left( {ABCD} \right) \Rightarrow AA' \bot AO\)
\( \Rightarrow d\left( {B{\rm{D}},AA'} \right) = AO = \frac{1}{2}AC = \frac{{a\sqrt 3 }}{2}\)
b) Tam giác \(OAB\) vuông tại \(O\)
\(\begin{array}{l} \Rightarrow BO = \sqrt {A{B^2} - A{O^2}} = \frac{a}{2} \Rightarrow B{\rm{D}} = 2BO = a\\{S_{ABC{\rm{D}}}} = \frac{1}{2}AC.B{\rm{D}} = \frac{{{a^2}\sqrt 3 }}{2}\\{V_{ABC.A'B'C'}} = {S_{ABC{\rm{D}}}}.AA' = \frac{{3{a^3}}}{4}\end{array}\)
Đáp án A