K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Gọi ba số đã cho u1,u2,u7 theo thứ tự là ba số của một cấp số cộng (un) và v1,v2, v3 của cấp số nhân (vn) . Theo giả thiết Ta có hệ:

Giải phương trình (6)

( 6 ) ⇔ u 1 q − 1 = 1 6 u 1 q − 1 q + 1 ⇔ u 1 q − 1 = 0 ​  ( l o a i ) 1 = 1 6 q + 1

Thay vào (*), ta được

u 1 1 + 5 + 5 2 = 93 ⇔ u 1 = 3 = v 1

Suy ra

u 2 = u 1 . q = 3.5 = 15 = v 2 u 3 = u 1 . q 2 = 3.25 = 75 = v 3

 

Vậy tích ba số  v 1 . v 2 . v 3 = 3.15.75 = 3375

Đáp án A

21 tháng 4 2016

Gọi 3 số đã cho là \(u_1;u_2;u_3\), theo thứ tự là 3 số của một cấp số cộng

Còn cấp số nhân \(\left(v_n\right)\). Theo giả thiết ta có hệ :

\(\Leftrightarrow\begin{cases}v_1+v_2+v_3+v_4=93\left(a\right)\\v_1=u\left(1\right)_1\\u_1+d=v_1q\left(2\right)\\u_1+2d=v_1q^2\left(3\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}v_1\left(1+q+q^2\right)=93\left(a\right)\\d=u_1\left(q-1\right)\left(1V2\right)\left(4\right)\\6d=u_3-u_1=u_1\left(q^2-1\right)\left(2V3\right)\left(5\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}u_1\left(1+q+q^2\right)=93\left(a\right)\\u_1\left(q-1\right)=\frac{1}{6}u_1\left(q^2-1\right)\left(4V5\right)\left(6\right)\\d=u_1\left(q-1\right)\end{cases}\)

Từ (1) và (2) cho ta phương trình (4). Còn từ (2) và (3) cho phương trình (5). Mặt khác ừ (4) và (5) cho phương trình (6)

Do \(u_1\ne0,q\ne1\Rightarrow\left(6\right)\Leftrightarrow1=\frac{1}{6}\left(q+1\right)\Leftrightarrow q=5\)

Theo (a) : \(v_1+5v_1+25v_1=93\Leftrightarrow u_1=3\)

Vậy 3 số cần tìm là : 3,15,75

18 tháng 2 2018

mấy ô ơi sao lại là 6d tưởng 2d chứ

 

30 tháng 12 2019

Chọn A

Gọi u1,u2,u3,u4 là 4 số hạng đầu tiên của cấp số nhân, với công bội q. gọi (vn) là cấp số cộng tương ứng với công sai là d. Theo giả thuyết Ta có:

u 1 + u 2 + u 3 = 16 4 9 u 1 = v 1 u 2 = v 4 = v 1 + 3 d u 3 = v 8 = v 1 + 7 d ⇔ u 1 + u 1 q + u 2 q 2 = 16 4 9    1 u 1 q = u 1 + 3 d                        2 u 1 q 2 = u 1 + 7 d                     3

Khử d từ (2) và (3) ta thu được: 

7 u 1 q = 7 u 1 + 21 d 3 u 1 q 2 = 3 u 1 + 21 d

Lấy vế trừ vế ta thu được 

7 u 1 q − 3 u 1 q 2 = 4 u 1 ⇔ u 1 . 3 q 2 − 7 q + 4 = 0 ⇔ u 1 = 0 3 q 2 − 7 q + 4 = 0

Do  u 1 ≠ 0 ⇒ q = 1 q = 4 3

Theo định nghĩa cấp số nhận thì q ≠ 1 . Do đó  q = 4 3

Thay q = 4 3 vào (1) ta được  u 1 = 4

10 tháng 9 2019

23 tháng 12 2016

ta có : U1

U2=U1.q

...

=> S3=U1(1+q+q2)=...........

2 tháng 1 2017

Chọn C

Gọi ba số đó lần lượt là x,y,z

Do ba số là các số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng nên ta có liên hệ:  y = x + 7 d ,   z = x + 42 (với d là công sai của cấp số cộng)

Theo giả thiết ta có:  x + y + z   = x + x + 7 d + x + 42 d   = 3 x + 49 d   = 217

Mặt khác do x,y,z là các số hạng liên tiếp của một cấp số nhân nên

26 tháng 12 2017

Đáp án C

10 tháng 11 2018

Đáp án D

25 tháng 5 2017

Gọi ba số đó là \(x,y,z\). Do ba số là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng nên:
\(x;y=x+7d;z=x+42d\). (Với d là công sai của cấp số cộng).
Ta có: \(x+y+z=x+x+7d+x+42d=3x+49d=217\).
Mặt khác x, y, z là các số hạng liên tiếp của một cấp số nhân nên:
\(y^2=xz\)\(\Leftrightarrow\left(x+7d\right)^2=x\left(x+42d\right)\)\(\Leftrightarrow-28xd+49d^2=0\)\(\Leftrightarrow7d\left(-4x+7d\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}d=0\\-4x+7d=0\end{matrix}\right.\).
Với \(d=0\) suy ra \(x=y=z=\dfrac{217}{3}\).
Suy ra: \(n=820:\dfrac{217}{3}=\dfrac{2460}{217}\notin N\).
Với \(4+7d=0\). Ta có hệ:
\(\left\{{}\begin{matrix}4x+7d=0\\3x+49d=217\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\d=4\end{matrix}\right.\).
Vậy \(u_1=7-4=3\).
\(S_n=\dfrac{\left[2u_1+\left(n-1\right)d\right]n}{2}=\dfrac{\left[2.3+\left(n-1\right)4\right]n}{2}=820\)
 \(\Rightarrow n=20\left(tm\right)\).