cho tam giác ABC có góc B = 45 độ.góc A = 15 độ. trên tia đối CB,lấy điểm D ( CD = 2BC ).kẻ DE vuông góc với AC . Chứng minh
a) EB=ED
b) góc ADB bằng bao nhiêu độ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của HÀ nhi HAongf - Toán lớp 7 - Học toán với OnlineMath
Tham khảo
Trong sách nâng cao và các chuyên đề 7 tập 1 đó bạn bài 7sáu trang 30
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
b)tính góc ADB
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
Câu hỏi của HÀ nhi HAongf - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé.
Kẻ \(DE\perp AC\left(E\in AC\right)\), điểm F sao cho BC = CF \(\left(F\in CD\right)\)
Xét \(\Delta ABC\)có \(\widehat{ACD}\)là góc ngoài nên \(\widehat{ACD}=15^0+45^0=60^0\)(1)
Xét \(\Delta CED\)vuông tại E có EF là trung tuyến nên \(EF=CF=FD\)(2)
Từ (1) và (2) suy ra \(\Delta ECF\)đều\(\Rightarrow EC=CF\)
Mà \(BC=CF\)nên \(\Rightarrow EC=BC\Rightarrow\Delta BEC\)cân tại C (3)
Áp dụng định lý về tổng ba góc trong tam giác, ta được: \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-60^0=120^0\)(4)
Tử (3) và (4) suy ra \(\widehat{EBC}=\frac{180^0-120^0}{2}=30^0\)
Mà \(\widehat{ABE}+\widehat{EBC}=45^0\left(=\widehat{B}\right)\)\(\Rightarrow\widehat{ABE}=15^0=\widehat{BAC}\)
Suy ra \(\Delta AEB\)cân tại E\(\Rightarrow EB=EA\)(5)
Xét \(\Delta CED\)vuông tại E có \(\widehat{C}=60^0\)nên \(\widehat{EDC}=30^0=\widehat{EBD}\)
Suy ra \(\Delta BED\)cân tại E \(\Rightarrow BE=ED\)(6)
Từ (5) và (6) suy ra \(EA=ED\)mà \(\widehat{AED}=90^0\)nên \(\Delta AED\)vuông cân tại E.
\(\Rightarrow\widehat{ADE}=45^0\)
Mà \(\widehat{ADB}=\widehat{ADE}+\widehat{EDB}\)nên \(\widehat{ADB}=30^0+45^0=75^0\)
Vậy \(\widehat{ADB}=75^0\)
Tự vẽ hình nhé
a, Ta có : \(\widehat{ACD}=\widehat{ABC}+\widehat{BAC}=45^0+15^0=60^0\),vì thế trong tam giác vuông CED thì \(\widehat{CDE}=30^0\).Gọi I là trung điểm của CD thì IE = IC.Tam giác ICE là tam giác đều nên CI = CE,từ đó CE = CB,do đó tam giác BEC cân tại đỉnh C,khi đó \(\widehat{CBE}=30^0=\widehat{CDE}\). Tam giác BED cân tại đỉnh E.Vậy EB = ED.
b, \(\widehat{ABE}=\widehat{ABC}-\widehat{EBC}=45^0-30^0=15^0\)nên \(\widehat{EAB}=\widehat{EBA}\).
Tam giác AEB cân ở E,do đó EA = EB,suy ra EA = ED
Tam giác EAD vuông cân,\(\widehat{EDA}=45^0\)
\(\widehat{BDA}=\widehat{BDE}+\widehat{EDA}=30^0+45^0=75^0\)