Một con lắc đơn chiều dài dây treo l, vật nặng có khối lượng m. Kéo con lắc ra khỏi vị trí cân bằng một góc Lực căng dây ở vị trí có góc lệch xác định bởi:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
+ Biểu thức của lực căng dây T = mg 3 cosα - 2 cosα o .
Đáp án C
+ Khi lực cân bằng trọng lượng, ta có:
+ Gia tốc của con lắc:
- Gia tốc tiếp tuyến:
- Gia tốc hướng tâm:
- Gia tốc của vật:
Đáp án C
+ Khi lực cân bằng trọng lượng, ta có: 3mgcos α - 2mgcos α = mg ⇒ 3 cos α - 2 cos 45 0 = 1
- Gia tốc tiếp tuyến:
- Gia tốc hướng tâm: 2 g ( cos α - cos α 0 )
Gia tốc của vật
Chọn mốc thế năng ở vị trí cân bằng
a. Ta có cơ năng
W = m g z = m g l ( 1 − cos 60 0 ) = 0 , 5.10.1 ( 1 − 0 , 5 ) = 2 , 5 ( J )
b. Theo định luật bảo toàn cơ năng
W A = W B ⇒ m g z A = 1 2 m v B 2 + m g z B ⇒ v B = 2 g ( z A − z B ) ( 1 ) M à z A = H M = l − O M = l − l cos α 0 z B = l − l cos α
Thay vào ( 1 ) ta có
v B = 2 g l ( cos α − cos α 0 ) + K h i α = 30 0 ⇒ v B = 2 g l ( cos 30 0 − cos 60 0 ) ⇒ v B = 2.10.1 ( 3 2 − 1 2 ) ≈ 2 , 71 ( m / s )
+ K h i α = 45 0 ⇒ v B = 2 g l ( cos 45 0 − cos 60 0 ) ⇒ v B = 2.10.1 ( 2 2 − 1 2 ) ≈ 2 , 035 ( m / s )
Xét tai B theo định luật II Newton ta có: P → + T → = m a →
Chiếu theo phương của dây
T − P y = m a h t ⇒ T − P cos α = m v 2 l ⇒ T − m g cos α = 2 m g ( cos α − cos α 0 ) ⇒ T = m g ( 3 cos α − 2 cos α 0 )
Khi α = 30 0 ⇒ T = m g ( 3 cos 30 0 − 2 cos 60 0 )
⇒ T = 0 , 5.10 ( 3. 3 2 − 2. 1 2 ) = 7 , 99 ( N )
Khi α = 45 0 ⇒ T = m g ( 3 cos 45 0 − 2 cos 60 0 )
⇒ T = 0 , 5.10 ( 3. 2 2 − 2. 1 2 ) = 5 , 61 N
Lưu ý: Khi làm trắc nghiệm thì các em áp dụng luôn hai công thức
+ Vận tốc của vật tại vị trí bất kỳ: v B = 2 g l ( cos α − cos α 0 )
+ Lực căng của sợi dây: T = m g ( 3 cos α − 2 cos α 0 )
c. Gọi C là vị trí để vật có v= 1,8m/s
Áp dụng công thức v C = 2 g l ( cos α − cos α 0 )
1 , 8 = 2.10.1 ( cos α − cos 60 0 ) ⇒ cos α = 0 , 662 ⇒ α = 48 , 55 0
Vật có đọ cao
z C = l − l cos α = 1 − 1.0 , 662 = 0 , 338 ( m )
d. Gọi D là vị trí vật có độ cao 0,18m
Áp dụng công thức
z D = l − l cos α ⇒ 0 , 18 = 1 − 1. cos α ⇒ cos α = 0 , 82
Áp dụng công thức
v D = 2 g l ( cos α − cos α 0 ) = 2.10.1. ( 0 , 82 − 0 , 5 ) = 2 , 53 ( m / s )
e. Gọi E là vị trí mà 2 w t = w đ Theo định luật bảo toàn cơ năng W A = W E
W A = W d E + W t E = 3 2 W d E ⇒ 2 , 5 = 3 2 . 1 2 . m v E 2 ⇒ v E = 2 , 5.4 3. m = 10 3.0 , 5 = 2 , 581 ( m / s )
f. Gọi F là vị trí để 2 w t = 3 w đ
Theo định luật bảo toàn cơ năng W A = W F
W A = W d F + W t F = 5 3 W t F ⇒ 2 , 5 = 5 3 . m g z F ⇒ z F = 2 , 5.3 5. m . g = 0 , 3 ( m ) M à z F = l − l cos α F ⇒ 0 , 3 = 1 − 1. cos α F ⇒ cos α F = 0 , 7 ⇒ α F = 45 , 573 0
Mặt khác v F = 2 g l ( cos α F − cos 60 0 ) = 2.10.1 ( 0 , 7 − 0 , 5 ) = 2 ( m / s )
Xét tại F theo định luật II Newton P → + T → = m a →
Chiếu theo phương của dây
− P cos α F + T F = m v F 2 l ⇒ − 0 , 5.10.0 , 7 + T F = 0 , 5. 2 2 1 ⇒ T = 5 , 5 ( N )
Vận tốc:
\(v=\sqrt{2gl\left(cos\alpha-cos\alpha_0\right)}=\sqrt{2\cdot10\cdot2\cdot\left(cos30^o-cos60^o\right)}\)
\(=3,83\)m/s
Lực căng dây:
\(T=mg\left(3cos\alpha-2cos\alpha_0\right)=0,1\cdot10\cdot\left(3cos30^o-2cos60^o\right)\)
\(=1,6N\)
Vận tốc cực đại:
\(v=\sqrt{2gl\left(1-cos\alpha_0\right)}=\sqrt{2\cdot10\cdot2\cdot\left(1-cos60^o\right)}=2\sqrt{5}\)m/s
Lực căng dây cực đại:
\(T_{max}=mg\left(3-2cos\alpha_0\right)=0,1\cdot10\cdot\left(3-2\cdot cos60^o\right)=2N\)
Góc lệch cực đại:
\(mgl\left(1-cos\beta\right)=\dfrac{1}{2}mv^2\)
\(\Rightarrow0,1\cdot10\cdot0,5\cdot\left(1-cos\beta\right)=\dfrac{1}{2}\cdot0,1\cdot\left(2\sqrt{5}\right)^2\)
\(\Rightarrow cos\beta=-1\Rightarrow\beta=180^o\)
Biểu thức của lực căng dây
Đáp án A