K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

1)

gọi ba số tự nhiên liên tiếp là a;a+1;a+2

ta có :

a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3

=>dpcm

2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4

ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5

=>dpcm

20 tháng 11 2015

Câu hỏi tương tự.

 

24 tháng 2 2016

vi p la so nguyen to nen p khong chia het cho 3 

=>p=2k+1 hoac 2k+2

- xet p=2k+1 thi 8p+1=8(2k+1)+1

                                =16k+8+1

                                = 16k+10

                                = 2(8k+5)

vi 2 chia het cho 2 nen 2(8k+8)  chia het cho 2

=>8p+1 la hop so.vo li

=>p khac 2k+1

- xet p=2k+2 thi 4p+1=4(2k+2)+1

                                = 8k+8+1

                                =8k+10

                                 =2(4k+5)

vi 2 chia het cho 2 nen 2(4k+5) chia het cho 2

=>4p+1 la hop so

vay 4p+1 la hop so

18 tháng 1 2016

trừ điểm Lê Nhật Minh đi 

25 tháng 12 2014

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

6 tháng 4 2016

phuong ne 3(k+1)sao la so nguyen to duoc

7 tháng 1 2018

+) Với p=2 thì p= 2+2=4    LÀ HỢP SỐ

                       p=2+4=6     LÀ HỢP SỐ

vậy p=2 loại

+) Với p=3 thì p= 3+2 = 5 là số nguyên tố

                            3+4=7    là số nguyên tố

Vậy p=3 nhận

+) Với p<3 thì p=3k+1 hoặc 3k+2

TH1: p=3k+1 thì p=3k+ 1+ 2=3k+3 chia hết cho 3 và <3 nên p+2 là hợp số

vậy p=3k+ 1 loại

TH2: p=3k+ 2 thì p=3k+2+2=3k+ 4 chia hết cho 2 và <3 nên p+ 2  là hợp số

vậy p=3k+ 2 loại

vậy p = 3 thì p+2 và p+4 là các số nguyên tố

3 tháng 6 2017

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)

- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6  \(⋮\) 3 là hợp số (loại)

- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)

=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)

3 tháng 6 2017

sửa dòng cuối: 21k + 15 \(⋮\)3 là hợp số (đpcm)

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 

nhầm đề , đây là bài đúng ! ^.^

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 
2/ Đặt Q(x)=P(x)-(x+1) 
Q(1999)=P(1999)-(1999+1)=2000-2000=0 
Q(2000)=P(2000)-(2000+1)=2001-2001=0 
=>x-1999,x-2000 là các nghiệm của Q(x) 
Đặt Q(x)=(x-1999)(x-2000).g(x) 
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1) 
=>Q(x) =(x-1999)(x-2000).( ax+b) 
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1) 
P(2001)=(2001-1999)(2001-2000) 
(a.2001+b)+(2001+1) 
=2(2001a+b)+2002 
=4002a+2b+2002 
P(1998)= (1998-1999)(1998-2000)(a.1998+b) 
+(1998+1) 
=2(a.1998+b)+1999 
=3996a+2b+1999 
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999 
=6a+3 
=3(a+2) 
Do a thuộc Z,a khác -1 
=>a+2 thuộc Z,a+2 khác 1 
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3 
=>3(a+2) là hợp số 
=> P(2001) - P(1998) là hợp số