K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(2x^2-7xy+3y^2+x-3y\)

\(=2x^2-6xy-xy+3y^2+x-3y\)

\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2021

Lời giải:
a.

Đặt $2a^2+5ab-3b^2-7b-2=(a+mb+n)(2a+pb+k)$ với $m,n,p,k$ nguyên 

$\Leftrightarrow 2a^2+5ab-3b^2-7b-2=2a^2+ab(2m+p)+mpb^2+a(k+2n)+b(km+np)+kn$ 

Đồng nhất hệ số:

\(\left\{\begin{matrix} 2m+p=5\\ mp=-3\\ k+2n=0\\ km+np=-7\\ kn=-2\end{matrix}\right.\)

Giải hpt này ta thu được $m=3; n=1; p=-1; k=-2$

Vậy $2a^2+5ab-3b^2-7b-2=(a+3b+1)(2a-b-2)$

b. Đa thức không phân tích được thành nhân tử

28 tháng 8 2021

lm theo pp đồng nhất hệ số ạ

b: Ta có: \(2x^2-7xy+3y^2+x-3y\)

\(=2x^2-6xy-xy+3y^2+x-3y\)

\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

12 tháng 7 2023

(a+b)2-(a-b)2=4ab=>ab = \(\left(\dfrac{a+b}{2}\right)^2\)-\(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là hiệu 2 số chính phương vì a≡b(mod 2) => a+b và a-b chia hết cho 2 nên \(\left(\dfrac{a+b}{2}\right)^2\) và \(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là 2 số tự nhiên

17 tháng 11 2015

Cái tội lười làm bài tập nó thế đấy! Me, too!

Bài 3: 

a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)

\(=y^2+8y-5y-40-y^2+y-4y+4\)

=-36

b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)

\(=y^4-y^4+1\)

=1

Bài 2: 

a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)

\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)

\(=2a^2-b^2\)

b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)

\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)

\(=6b^2-7ab\)

c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)

\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)

\(=3b^2-7xb+2x^2\)