Câu 1 (1,5 điểm). Rút gọn các biểu thức sau:
a. A = b)B = c) C =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)
\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)
a: \(A=\left(100-99\right)\left(100+99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1\)
=5050
b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\cdot\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1=2^{128}\)
a. \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
\(=\dfrac{\left(199+3\right)\left(\dfrac{199-3}{4}+1\right)}{2}=5050\)
b. \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=2^{128}-1+1=2^{128}\)
c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-2b^2-4ab\)
\(=2c^2\)
a) \(\sqrt{4a^2}=2\left|a\right|=-2a\) ( do a<0)
b) \(\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=\left|2x-3\right|=3-2x\)(do \(x< \dfrac{3}{2}\Leftrightarrow2x-3< 0\))
\(a,A=7\sqrt{5}+6\sqrt{5}-5\sqrt{5}-6\sqrt{5}=2\sqrt{5}\\ b,B=12-5\cdot2=2\\ c,C=\left[2-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\right]\left[2+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}\right]\\ C=\left(2-\sqrt{7}\right)\left(2+\sqrt{7}\right)=4-7=-3\)
thankssss