Tìm số tự nhiên n, biết 3 n C n 0 − 3 n − 1 C n 1 + 3 n − 2 C n 2 − 3 n − 3 C n 3 + ... + − 1 n . C n n = 2048
A. 9
B. 10
C. 11
D. một kết quả khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
a.
\(1+2+3+...+n=820\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640\)
\(\Leftrightarrow n\left(n+1\right)=40.41\)
\(\Rightarrow n=40\)
b.
\(\left(n+5\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+1⋮n+1\)
\(\Rightarrow n+1=Ư\left(1\right)\)
\(\Rightarrow\left[{}\begin{matrix}n+1=-1\\n+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=-2\notin N\left(loại\right)\\n=0\end{matrix}\right.\)
c.
\(\left(2n+7\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4+3\right)⋮\left(n+2\right)\)
\(\Rightarrow2\left(n+2\right)+3⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do n tự nhiên \(\Rightarrow n\ge0\Rightarrow n+2\ge2\)
\(\Rightarrow n+2=3\)
\(\Rightarrow n=1\)
Câu 17
Để n - 1 là ước của 3n + 6 thì (3n + 6) ⋮ (n - 1)
Ta có:
3n + 6 = 3n - 3 + 9 = 3(n - 1) + 9
Để (3n + 6) ⋮ (n - 1) thì 9 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}
⇒ n ∈ {-8; -2; 0; 2; 4; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 4; 10}
Câu 22
A = 3 + 3² + 3³ + ... + 3²⁰²⁵
⇒ 3A = 3² + 3³ + 3⁴ + ... + 3²⁰²⁶
⇒ 2A = 3A - A
= (3² + 3³ + 3⁴ + ... + 3²⁰²⁶) - (3 + 3² + 3³ + ... + 3²⁰²⁵)
= 3²⁰²⁶ - 3
⇒ 2A + 3 = 3²⁰²⁶ - 3 + 3
⇒ 2A + 3 = 3²⁰²⁶
Mà 2A + 3 = 3ⁿ
⇒ 3ⁿ = 3²⁰²⁶
⇒ n = 2026
a) 3 ⋮ n ó n ∈ Ư (3). Ta có Ư (3) = {1;3}. Vậy n ∈ { 1;3}.
b) 3 ⋮ (n + l) ó (n + l) ∈ Ư (3). Ta có Ư (3) = {1;3}.
Vậy (n + l) ∈ {l ;3} => n ∈ {0; 2}.
c) Ta có: (n - 3) ⋮ (n - 1) và (n - 1) ⋮ (n -1);
Áp dụng tính chất chia hết của tổng (hiệu) ta có:
(n + 3) - (n + 1 ) ⋮ ( n+ l) ó 2 ⋮ ( n + 1) <=> ( n +1) ∈ Ư (2) = {1;2}
Từ đó n ∈ {0;l}.
d) Ta có (2n + 3) ⋮ (n - 2) và (n - 2) ⋮ (n - 2) =>2 (n - 2) ⋮ (n - 2);
Áp dụng tính chất chia hết của tổng (hiệu) ta có
(2n + 3)(n - 2) ⋮ (n - 2) <=> 7 ⋮ (n - 2) ó (n - 2) ∈ Ư(97) = {1;7}.
Từ đó n ∈ {3;9}
a) \(11^n=1331\)
\(\Rightarrow11^n=11^3\)
\(\Rightarrow n=3\)
b) \(n^3=125\)
\(\Rightarrow n^3=5^3\)
\(\Rightarrow n=5\)
c) \(5^4=n\)
\(\Rightarrow625=n\)
\(\Rightarrow n=625\)
d) \(\left(n+1^2\right)=9\)
\(\Rightarrow n+1=9\)
\(\Rightarrow n=9-1\)
\(\Rightarrow n=8\)
a) 11^n = 1331
⇒ 11^n = 11^3
⇔ n = 3
b) n^ 3 = 125
⇒ n^3 = 5^3
⇔ n = 5
c) 5^4 = n
⇒ n = 625
d) ( n + 1^2 ) = 9
⇒ ( n + 1 ) = 9
⇒ n = 8
Rút gọn :
\(C=1+3+3^2+3^3+...+3^{10}\)
\(\Rightarrow3C=3+3^2+....+3^{11}\)
\(\Rightarrow2C=3C-C=\left(3+3^2+...+3^{11}\right)-\left(1+3+3^2+...+3^{10}\right)\)
\(\Rightarrow2C=3^{11}-1\)
\(\Rightarrow C=\frac{3^{11}-1}{2}\)
Bạn thay vào rùi tính n nha
\(C=1+3+3^2+...+3^{10}\Rightarrow3C=3+3^2+3^3+...+3^{11}\)
\(\Rightarrow3C-C=\left(3+3^2+3^3+...+3^{11}\right)-\left(1+3+3^2+...+3^{10}\right)\)
\(\Rightarrow2C=3^{11}-1\Rightarrow2C+1=3^{11}\Rightarrow n=11\)
a) Ta có công thức tính tổng các số tự nhiên liên tiếp sau:
\(\Rightarrow1275=\frac{\left(1+n\right)n}{2}\Rightarrow\left(1+n\right)n=1275.2=2550=50.51\)
Mà n là số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp => n=50.
b) Đề chưa đầy đủ.
c) Ta có:
\(A=1.2+2.3+3.4+.....+19.20\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+19.20.\left(21-18\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+19.20.21-18.19.20\)
\(=\left(1.2.3+2.3.4+3.4.5+......+19.20.21\right)-\left(1.2.3+2.3.4+......+18.19.20\right)=19.20.21\)
\(\Rightarrow A=19.20.7=2660=133.2.10\Rightarrow\frac{A}{133.2}=\frac{2.133.10}{2.133}=10\)
cảm ơn bạn, mà đề chỉ là nếu có thôi chứ câu b đủ rồi á bạn
Chọn C
Vế trái của đẳng thức bằng (3-1)n =2n, Do đó 2n = 2048=211, suy ra n=11