K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)

Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-3}{x-1}\)

b) Để A nguyên thì \(-3⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)

14 tháng 7 2017

a. Ta có \(A=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}+\frac{9}{\sqrt{x}-3}\)

\(=3+\frac{9}{\sqrt{x}-3}\)

\(A\in Z\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\Rightarrow\sqrt{x}-3\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\Rightarrow x\in\left\{0;4;16;36;144\right\}\)

Vậy \(x\in\left\{0;4;16;36;144\right\}\)thì \(A\in Z\)

b. Thay \(x=7-4\sqrt{3}\Rightarrow A=\frac{3\sqrt{7-4\sqrt{3}}}{\sqrt{7-4\sqrt{3}}-3}\)

\(=\frac{3\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-3}=\frac{3\left(2-\sqrt{3}\right)}{2-\sqrt{3}-3}=\frac{15-9\sqrt{3}}{2}\)

a: DKXĐ: \(x\notin\left\{3;-3\right\}\)

b: \(A=\left(\dfrac{x}{\left(x-3\right)\left(x+3\right)}+\dfrac{-1}{x-3}\right)\cdot\dfrac{x+3}{3}\)

\(=\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{3}=\dfrac{-1}{x-3}\)

c: Thay x=5 vào A, ta được:

\(A=\dfrac{-1}{5-3}=-\dfrac{1}{2}\)

d: Để A là số nguyên thì \(x-3\in\left\{1;-1\right\}\)

hay \(x\in\left\{4;2\right\}\)

20 tháng 1 2022

ab, đk x khác 3 ; -3 

\(A=\left(\dfrac{x}{x^2-9}-\dfrac{1}{x-3}\right):\dfrac{3}{x+3}\Leftrightarrow=\left(\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{3}{x+3}=-\dfrac{1}{x-3}\)

c, x^2 - 8x + 15 = 0 <=> (x-3)(x-5) = 0 <=> x = 3 (ktm) ; x= 5 

Thay x = 5 vào A ta được : A =-1/2 

d, \(\Rightarrow x-3\inƯ\left(-1\right)=\left\{\pm1\right\}\)

TH1 : x - 3 = 1 <=> x = 4 

TH2 : x - 3 = -1 <=> x = 2 

2 tháng 11 2019

a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

c) để A>1/3 

\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)

\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)

\(\Rightarrow\sqrt{x}+3>3\)

\(\Rightarrow x>0\)

1 tháng 7 2021

\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)

\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)

\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)

\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)