Cho △ABC có AB=AC. Trên cạnh BC lấy hai điểm M và N sao cho BM=MN=NC. Biết AM=An. Chứng minh rằng:
a)△AMB=△ANC
b)Góc ABN=Góc ACM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)
a)Vì BN=AC mà AC=AM'
=> BN=AM' (tính chất bắc cầu)
vì BN=AM', AB=AB
=>AN=BM'
Vì BN'=BC mà BC=AM
=>BN'=AM
Vì BN'=AM, AB=AB
=>AN'=BM
Vì BN=AC ,AM=BC
=>MC=NC
b) mình chịu
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
b: Ta có: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
c: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,F thẳng hàng
a) Xét △AMB và △ANC có
AB = AC (gt)
BM = CN (gt)
AM = AN (gt)
=> △AMB = △ANC (c.c.c)
b) Vì △ABC có AB=AC
=> △ABC cân tại A
=> góc ABC = góc ACB
mà M, N ∈ BC
=> Góc ABN = góc ACM
Xét △ ABC có AB=AC
⇒ △ ABC cân tại A
⇒ ^B=^C hay ^ABN=^ACM
Xét △AMB và △ANC có:
AB=AC(gt)
^B=^C (cmt)
BM=CN(gt)
⇒ △AMB = △ANC(c.g.c)