K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2016

Ta có: 

a2 - 1 = (a - 1)(a + 1)

Vì a là số lẻ => a - 1 và a + 1 là số chẵn => a2 - 1 chia hết cho 2 (1)

Xét 3 số tự nhiên liên tiếp: a - 1; a; a + 1

Vì a khoogn chia hết cho 3 => 1 trong 2 số a - 1 và a + 1 chia hết cho 3 => a2 - 1 chia hết cho 3 (2)

Từ (1) và (2), kết hợp vs (2,3) = 1 => a2 - 1 chia hết cho 2.3 = 6

 

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:

Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

Nếu $a=6k+1$:

$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$

Nếu $a=6k+5$:

$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$

Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.

31 tháng 1 2016

Ta có: a không chia hết cho 3

TH1: a=3m+1              (m thuộc N)

=>a2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1

=>a2 chia 3 dư 1

TH2: a=3n+2          (n thuộc N)

=>a2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1

=>a2 chia 3 dư 1

Vậy a2 luôn chia 3 dư 1 

=>a2-1 chia hết cho 3                 (1)

Ta có: a lẻ

=>a2 lẻ

=>a2-1 chẵn

=>a2-1 chia hết cho 2            (2)

Từ (1) và (2) và (3;2)=1

=>a2-1 chia hết cho 3.2=6  (đpcm)

27 tháng 6 2023

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

3 tháng 12 2016

Do 6= 2.3

nên a.2-1 chia hết cho 2 và 3

Mà a.2 có tận cùng là chữ số lẻ nên a.2-1 chia hết cho 2

=> a2-1 chia hết cho 3 

Vậy a2-1  chia hết cho 6

4 tháng 4 2022

Bạn trên làm sai rồi!

Mình làm(Đã được thầy chữa 100%)

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

@Trịnh Đức Anh

26 tháng 12 2017

a là số lẻ
= > a2 là số lẻ
=> a2 - 1 là số chẵn
= > a2 - 1 chia hết cho 2

a không chia hết cho 3

a2 chia 3 dư 1

a2 - 1 chia hết cho 3
vì (2;3) = 1

Vậy a2 - 1 chia hết cho 2.3 = 6 ( đ.p.c.m)

26 tháng 12 2017

Ta có:

a là số lẻ

\(\Rightarrow\) a2 là số lẻ

\(\Rightarrow\) a2 - 1 là số chẵn

\(\Rightarrow\) a2 - 1 \(⋮\) 2

Mà a không chia hết cho 3

\(\Rightarrow\) a2 chia 3 dư 1

\(\Rightarrow\) a2 - 1 \(⋮\) 3

\(\Rightarrow\) a2 - 1 \(⋮\) 2;3

\(\Rightarrow\) a2 - 1 \(⋮\) 6

Vậy nếu a là một số lẻ không chia hết cho 3 thì a2 - 1 chia hết cho 6 ( ĐPCM )

Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.

Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.

Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.

25 tháng 12 2015

   giải

Nếu a là số lẻ ko chia hết cho 3 thì a2 -1 chia hết cho 6.

* Ta thấy a2 -1 = (a2-a)+(a-1)

                       = a(a-1)+(a-1)

                       = (a-1) x (a+1)

  Vậy a2-1= (a-1)x(a+1)

  Vì a lẻ => (a-1); (a+1) là 2 số chẵn liên tiếp. 

 Vậy (a-1)x(a+1) chia hết cho 2  

 Giả sử (a-1) ko chia hết cho 3 => a-1=3p+1 =>a=3p+2

  Vậy a+1 chia hết cho 3 => (a-1)x(a+1) chia hết cho 3.

  Vì (a-1)x (a+1) chia hết cho 2 và 3 => (a-1)x(a+1) chia hết cho 6 => a2 -1 chia hêt cho 6.

   tick cho tui nhé

 

14 tháng 7 2017

+ Do a lẻ => a^2 lẻ => a^2 - 1 chẵn => a^2 - 1 chia hết cho 2 (1)

+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)

Nếu a = 3k + 1 thì a^2 = (3k + 1).(3k + 1) = (3k + 1).3k + (3k + 1) = 9k 2 + 3k + 3k + 1 chia 3 dư 1

Nếu a = 3k + 2 thì a^2 = (3k + 2).(3k + 2) = (3k + 2).3k + 2.(3k + 2) = 9k 2 + 6k + 6k + 4 chia 3 dư 2

=> a^2 chia 3 dư 1 => a^2 - 1 chia hết cho 3 (2)

Từ (1) và (2), do (2;3)=1 => a 2 - 1 chia hết cho 6

nhe