K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Đáp án B

Đồ thị hàm số đi qua điểm A 1 ; 1 ⇔ 1 = 1 + 2 m + 1 m − 1 ⇔ m ≠ 1 2 m + 2 = m − 1 ⇔ m = − 3.

20 tháng 1 2017

Chọn D.

 

22 tháng 12 2023

a: Thay x=1 và y=-1 vào (d), ta được:

\(\left(m-2\right)\cdot1+m+1=-1\)

=>m-2+m+1=-1

=>2m-1=-1

=>2m=0

=>m=0

b: Thay y=0 vào y=x+2, ta được:

x+2=0

=>x=-2

Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:

-2(m-2)+m+1=0

=>-2m+4+m+1=0

=>5-m=0

=>m=5

23 tháng 6 2021

Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :

-4 = (m-1) + m+3

<=> -4 = 2m + 2

<=> m =-3

23 tháng 6 2021

1) Đặt tên cho dễ giải nè:

(d1) : y= (m-1) x + m+ 3

(d2) : y = -2x + 1

(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1

<=> m = -1 và m \(\ne\)-2 

22 tháng 11 2021

\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)

Vậy (1) luôn đi qua A(-1;4)

3 tháng 2 2022

Ta có : \(y'=3x^2+3m\)

Điều kiện để hàm số có 2 điểm cực trị là y'=0 có 2 nghiệm phân biệt

\(\Leftrightarrow 3x^2=-3m\) có 2 nghiệm phân biệt

\(\Leftrightarrow m<0\)

Đường thẳng đi qua 2 điểm cực trị là phần dư khi lấy y chia cho y':

\(x^3+3mx+1=\dfrac{x}{3}.(3x^2+3m)+2mx+1\)

\(=>\) đường thẳng đi qua 2 điểm cực trị có dạng: \(y=2mx+1\)

\(\Leftrightarrow 2mx-y+1=0\) \((\Delta)\)

\(d_{(M,\Delta)}=\dfrac{|0.2m+3.(-1)+1|}{\sqrt{4m^2+1}}=\dfrac{2}{\sqrt{5}}\)

\(\Leftrightarrow 4m^2+1=5 \Leftrightarrow m^2=1 \Leftrightarrow m=\pm1\)

Đối chiếu với điều kiện ta được \(m=1\)

 

15 tháng 9 2021

Theo đk thì m=–1 mới đúng

5 tháng 6 2021

G/s (P),(d),(d1) cùng đi qua một điểm

Gọi I(a,b) là giao điểm của (P),(d),(d1)

Có \(I\in\left(P\right),\left(d\right),\left(d1\right)\)\(\Rightarrow\left\{{}\begin{matrix}b=a^2\left(1\right)\\b=a+2\left(2\right)\\b=-a+m\left(3\right)\end{matrix}\right.\)

Từ (1);(2)\(\Rightarrow a^2=a+2\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-1\end{matrix}\right.\)

TH1: Tại \(a=2\Rightarrow b=a^2=4\)

Thay \(a=2;b=4\) vào (3) ta được:\(4=-2+m\) \(\Leftrightarrow m=6\)

TH2: Tại \(a=-1\Rightarrow b=a^2=1\)

Thay \(a=-1;b=1\) vào (3) ta được:\(1=1+m\) \(\Leftrightarrow m=0\)

Vậy m=6 hoặc m=0

5 tháng 6 2021

Phương trình hoành độ giao điểm của (d) và (P):

\(x^2=x+2\)

\(\Leftrightarrow x^2-x-2=0\)(*)

Ta có: \(a-b+c=1-\left(-1\right)+\left(-2\right)=0\)

Do đó phương trình (*) có 2 nghiệm phân biệt

\(x_1=-1;x_2=\dfrac{-c}{a}=2\)

\(x_1=-1\) thì \(y_1=x_1^2=\left(-1\right)^2=1\)

\(x_2=2\) thì \(y_2=x_2^2=2^2=4\)

Vậy (d) và (P) cắt nhau tại 2 điểm phân biệt \(A\left(-1;1\right);B\left(2;4\right)\)

Do đó các đồ thị của (P), (d) và \(\left(d_1\right)\)cùng đi qua 1 điểm 

\(\Leftrightarrow\left[{}\begin{matrix}A\in\left(d_1\right)\\B\in\left(d_1\right)\end{matrix}\right.\)               \(\Leftrightarrow\left[{}\begin{matrix}1=1+m\\4=-2+m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=6\end{matrix}\right.\)

Vậy khi m=0 hoặc m=6 thì các đồ thị của (P),(d) và cùng đi qua 1 điểm

-Chúc bạn học tốt-