K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

10cm

13 tháng 11 2021

BC=10cm

Vì tỉ số hai hình chiếu của AB và AC trên cạnh huyền bằng 9/16 nên \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=25\)

\(\Leftrightarrow AC^2=16\)

\(\Leftrightarrow AC=4\left(cm\right)\)

\(\Leftrightarrow AB=3\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{4\cdot3}{2}=6\left(cm^2\right)\)

8 tháng 4 2019

Ta có hai tam giác ABC và tam giác NPM có  B C = P M , B ^ = P ^ = 90 0 mà BC, PM là hai cạnh góc vuông của tam giác ABC và NPM nên để hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông thì ta cần thêm điều kiện CA = MN

Đáp án C

13 tháng 7 2016

Gọi M là trung điểm AB 

Xét △△ vuông ABC (ˆA=90o)(A^=90o). Theo định lí Pytago ta có 

AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15

Xét △ABC△ABC có M là trung điểm AB, E là trung điểm BC \Rightarrow ME là đường trung bình của △ABC△ABC

\Rightarrow ME//AC,ME=12AC=7,5ME//AC,ME=12AC=7,5

Xét △ABD△ABD vuông tại D có DM là trung tuyến thuộc cạnh AB 

⟹DM=12AB=4⟹DM=12AB=4

Do △ABD△ABD đều \Rightarrow trung tuyến DM còn là đường cao

⟹MD⊥AB⟹MD//AC⟹MD⊥AB⟹MD//AC

Do DM//AB,EM//AB⟹D,M,EDM//AB,EM//AB⟹D,M,E thẳng hàng 

⟹DE=ME−DM=7,5−4=3,5⟹DE=ME−DM=7,5−4=3,5
 

Vậy DE=3,5 cm​

4 tháng 3 2017

Đề thiếu yêu cầu hay là thừa dữ kiện? Thực sự cm \(AM⊥BC\)không cần đến độ dài cạnh. Cần \(\Delta\)cân và 1 đường (ở đây là trung tuyến) là đủ!

(Bạn tự vẽ hình nhé!)

Ta có: \(\Delta ABC\)cân tại \(A\Rightarrow AM\)vừa là trung tuyến vừa là đường cao \(\Rightarrow AM⊥BC\)