K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

(Quy tắc hình bình hành)

(Trong đó D là đỉnh còn lại của hình bình hành ABCD)

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

+ Tính BD:

Hình bình hành ABCD có AB = BC = a nên ABCD là hình thoi.

⇒ AC ⊥ BD tại O là trung điểm của AC và BD.

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

24 tháng 9 2023

Tham khảo:

\(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB}  \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = CB = a.\)

Dựng hình bình hành ABDC tâm O như hình vẽ.

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Vì tứ giác ABDC là hình bình hành, lại có \(AB = AC = BD = CD = a\) nên ABDC là hình thoi.

\( \Rightarrow AD = 2AO = 2.AB.\sin B = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 .\)

Vậy \(\left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = a\) và \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Các vectơ có độ dài bằng a và có điểm đầu, điểm cuối là các đỉnh của tam giác ABC là:

\(\overrightarrow {AB} ;\;\overrightarrow {BA} ;\;\overrightarrow {AC} ;\;\overrightarrow {CA} ;\;\overrightarrow {BC} ;\;\overrightarrow {CB} \)

Chú ý khi giải:

Vectơ \(\overrightarrow {AB} \) khác vectơ \(\overrightarrow {BA} \) (khác nhau điểm đầu và điểm cuối).

14 tháng 9 2021

2AB+3AC=5BC

=> =5a

18 tháng 3 2017

Dựng điểm D sao cho H  là trung điểm AD.

Ta có;  H là trung điểm của mỗi đường AD ;  BC. Do đó, tứ giác ACDB là hình bình hành.

NV
12 tháng 11 2021

Gọi G là trọng tâm tam giác

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là chân đường vuông góc hạ từ G xuống BC hay M là trung điểm BC

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=3MG=AM=\dfrac{a\sqrt{3}}{2}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Dựng hình bình hành ABDC.

Áp dụng quy tắc hình bình hành vào ABDC ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD}  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Gọi O là giao điểm của AD và BC, ta có:

\(AO = \sqrt {A{B^2} - B{O^2}}  = \sqrt {A{B^2} - {{\left( {\frac{1}{2}BC} \right)}^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

\(AD = 2AO = a\sqrt 3  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \)

Vậy độ dài vectơ \(\overrightarrow {AB}  + \overrightarrow {AC} \) là \(a\sqrt 3 \)

31 tháng 3 2017

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

\(\left|\overrightarrow{HA}\right|=\left|\overrightarrow{HB}\right|=\left|\overrightarrow{HC}\right|=\dfrac{2}{3}\cdot\dfrac{a\sqrt{2}}{3}=\dfrac{2a\sqrt{2}}{9}\)