K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3) 

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

Chọn B.

Mọi người giải giúp mk với ạ Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1. Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1 Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10 Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10. Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu,...
Đọc tiếp

Mọi người giải giúp mk với ạ

Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.

Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1

Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10

Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.

Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .

Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2

Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :

Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4

Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,

Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+

Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.

0
HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có \(t = \frac{1}{x},\) nên khi x tiến đến 0 thì t tiến đến dương vô cùng do đó

\(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}} = \mathop {\lim }\limits_{t \to  + \infty } {\left( {1 + \frac{1}{t}} \right)^t} = e\)

b) \(\ln y = \ln {\left( {1 + x} \right)^{\frac{1}{x}}} = \frac{1}{x}\ln \left( {1 + x} \right)\)

\(\mathop {\lim }\limits_{x \to 0} \ln y = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\)

c) \(t = {e^x} - 1 \Leftrightarrow {e^x} = t + 1 \Leftrightarrow x = \ln \left( {t + 1} \right)\)

\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = \mathop {\lim }\limits_{t \to 0} \frac{t}{{\ln \left( {t + 1} \right)}} = 1\)

7 tháng 2 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)

=> A

NV
13 tháng 5 2020

\(\lim\limits_{x\rightarrow3}\frac{2\left(\sqrt{x+1}-2\right)}{x-3}=\lim\limits_{x\rightarrow3}\frac{2\left(\sqrt{x+1}-2\right)\left(\sqrt{x+1}+2\right)}{\left(x-3\right)\left(\sqrt{x+1}+2\right)}=\lim\limits_{x\rightarrow3}\frac{2\left(x-3\right)}{\left(x-3\right)\left(\sqrt{x+1}+2\right)}\)

\(=\lim\limits_{x\rightarrow3}\frac{2}{\sqrt{x+1}+2}=\frac{2}{4}=\frac{1}{2}\)

NV
8 tháng 1 2024

\(=\lim\limits_{x\rightarrow0}\dfrac{2\left(\sqrt[]{2x+1}-1\right)+2-\sqrt[3]{x^2+x+8}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2.2x}{\sqrt[]{2x+1}+1}-\dfrac{x\left(x+1\right)}{\sqrt[3]{\left(x^2+x+8\right)^2}+2\sqrt[3]{x^2+x+8}+4}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{4}{\sqrt[]{2x+1}+1}-\dfrac{x+1}{\sqrt[3]{\left(x^2+x+8\right)^2}+2\sqrt[3]{x^2+x+8}+4}\right)\)

\(=\dfrac{23}{12}\)

NV
17 tháng 5 2020

Đáp án A, khi \(x\rightarrow1\) thì \(x-2< 0\) nên biểu thức không xác định

\(\Rightarrow\) Giới hạn đã cho ko tồn tại

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với x bất kì và \(h = x - {x_0}\), ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_0} + h}} - {e^{{x_0}}}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_o}}}\left( {{e^h} - 1} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{{e^h} - 1}}{h} = {e^{{x_0}}}\end{array}\)

Vậy hàm số \(y = {e^x}\)  có đạo hàm là hàm số \(y' = {e^x}\)

b) Ta có \({a^x} = {e^{x\ln a}}\,\)nên \(\left( {{a^x}} \right)' = \left( {{e^{x\ln a}}} \right)' = \left( {x\ln a} \right)'.{e^{x\ln a}} = {e^{x\ln a}}\ln a = {a^x}\ln a\)

NV
13 tháng 5 2020

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+1}+x}{3x+5}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{x^2}}+1}{3+\frac{5}{x}}=\frac{2}{3}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2{\rm{x}} - 1}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {2 - \frac{1}{x}} \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \left( {2 - \frac{1}{x}} \right) = 2 - 0 = 2\)

Chọn A.