Tìm tất cả các giá trị của tham số m để ba điểm cực trị của đồ thị hàm số y = x 4 + 2 m - x x 2 + 1 - m là ba đỉnh của một tam giác vuông
A. m = -1
B. m = 1
C. m = 0 hoặc m = 1
D. = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có:
Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .
Với điều kiện (*) gọi ba điểm cực trị là:
.
Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.
Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC
Tam giác ABC vuông khi:
Vậy với m = ± 1 thì thỏa mãn yêu cầu bài toán.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0
⇔ m = ± 1
Đáp án A.
Ta có g x = f x + m ⇒ g ' x = f ' x . f x + m f x + m . (Chú ý: u = u ' . u u ).
Để hàm số y = g(x) có 3 điểm cực trị ⇔ g ' x = 0 có 3 nghiệm phân biệt (1).
Mặt khác, phương trình g ' x ⇔ [ f ' x = 0 f x + m = 0 ⇔ [ x = x 1 ; x = x 2 f x = - m (2).
Từ (1), (2) suy ra [ - m ≥ 1 - m ≤ - 3 ⇔ [ m ≤ - 1 m ≥ 3 .
Đáp án D
TXĐ: D= R.
Hàm số có ba điểm cực trị khi và chỉ khi m < 1.
lần lượt là ba điểm cực trị của đồ thị hàm số.
Để ABC là tam giác vuông cân thì