Cho tam giác ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha.
Lời giải:
+ Xét\(\Delta AHB\)và\(\Delta AKC\)có:
\(\widehat{AHB}=\widehat{AKC}=90^0\)
\(AB=AC\)(Do\(\Delta ABC\)cân tại A)
\(\widehat{HAB}=\widehat{KAC}\)
Do đó:\(\Delta AHB=\Delta AKC\)(g-c-g)
\(\Rightarrow AH=AK\)
\(\Rightarrow\Delta AHK\)cân tại A
\(\Rightarrow\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)
Mà\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(Do\(\Delta ABC\)cân tại A)
\(\Rightarrow\widehat{AKH}=\widehat{ABC}\)
\(\Rightarrow HK//BC\)
+Xét tứ giác BCKH có\(HK//BC\)
=> BCHK là hình thang
Mà\(\widehat{B}=\widehat{C}\)(Do\(\Delta ABC\)cân tại A)
=> BCHK là hình thang cân (đpcm)
Vậy BCHK là hình thang cân
cho tam giác ABC cân tại A có các đường cao Bh và CK .Chứng minh rằng tứ giác BCHK là hình thang cân
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔABC có AH/AC=AK/AB
nên HK//BC
=>BKHC là hình thang
mà góc KBC=góc HCB
nên BKHC là hình thang cân
Xét các tam giác vuông BKC và BHC có:
BC chung
^KBC=^HBC
=>\(\Delta\)BKC=\(\Delta\)BHC ( ch-gn )
=> BK=HC;KC=BH ( 1 )
Mà AB=AC=>AK=AH
Xét tam giác cân AKH có ^AKH=1800-^KAH-^KHA=\(\frac{180^0-\widehat{A}}{2}\)
Mà tam giác \(ABC\) cân tại A nên \(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)
=> KH//BC ( 2 )
Từ ( 1 );( 2 ) suy ra đpcm
Bài 6:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Bài 3:
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Bài 2:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK và HB=KC
Xét ΔABC có
\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)
Do đó: KH//BC
Xét tứ gác BKHC có KH//BC
nên BKHC là hình thang
mà KC=BH
nên BKHC là hình thang cân
Bài 2:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
Xét ΔABC có
\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)
Do đó: HK//BC
Xét tứ giác BCHK có HK//BC
nên BCHK là hình thang
mà HB=KC(ΔAHB=ΔAKC)
nên BCHK là hình thang cân
Bài 3:
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
a) Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90\left(gt\right)\)
BC: cạnh chung
\(\widehat{KBC}=\widehat{HCB}\left(gt\right)\)
=> ΔKBC=ΔHCB(ch-gn)
=>BK=HC
b) Có: AB=AK+KB
AC=AH+HC
Mà: AB=AC(gt); BK=HC(gt0
=>AK=AH
=>ΔAKH cân tại A
=>\(\widehat{AKH}=\frac{180-\widehat{A}}{2}\) (1)
Vì ΔABC cân tại A
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra: \(\widehat{AKB}=\widehat{ABC}\) . Mà hai góc này ở vị trí đồng vị
=> KH//BC
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)
=>BCHK là hình thang cân
a) ta có tam giác ABC cân tại A => hai đường cao BH vafCK cũng bằng nhau
b) ta có tam giác HBC = tam gác KCB
=> BK=CH
mặt khác KH//BC
=> BCHK là hình thang cân
c) góc BAC=40
=> B=C=(180-40):2=70
ta có K+B=180
=> K=H=180-70=110
a) Xét \(\Delta ABC\)đều có H là chân đường vuông góc hạ tự B xuống cạnh đáy AC
\(\Rightarrow\)H cũng là chân đường trung tuyến hạ từ B xuống đáy AC
\(\Rightarrow AH=HC\)
Tương tự \(\Rightarrow AK=KB\)
\(\Rightarrow\)HK là đường trung bính \(\Delta ABC\)
\(\Rightarrow HK//BC\)\(\Rightarrow\)HKCB là hình thang ( 1 )
Lại có \(\Delta ABC\)đều
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(=60^o\right)\)( 2 )
Từ (1) và (2) \(\Rightarrow\)BCHK là hình thang cân
b) Xét \(\Delta ABC\)đều \(\Rightarrow AB=AC=BC=\frac{24}{3}=8\left(cm\right)\)
Ta có \(AK=\frac{1}{2}AB;AH=\frac{1}{2}AC\)
Mà AB = AC \(\Rightarrow AK=AH\)
Lại có \(\widehat{KAH}=60^o\)
\(\Rightarrow\Delta AHK\)đều
Mà \(AK=\frac{1}{2}AB\Rightarrow AK=\frac{1}{2}\times8=4\left(cm\right)\)
\(\Rightarrow AK=AH=HK=4\left(cm\right)\)
\(C_{BCHK}=KH+HC+BC+BK\)
\(\Leftrightarrow C_{BCHK}=KH+AH+BC+AK\)
\(\Leftrightarrow C_{BCHK}=4+4+8+4\)
\(\Leftrightarrow C_{BCHK}=20\left(cm\right)\)
Vậy ...
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔABC có AH/AC=AK/AB
nên HK//BC
=>BKHC là hình thang
mà BH=CK
nên BKHC là hình thang cân
Chứng minh DBKC = DCHB (ch-gnh)
Suy ra CK = BH & AK = AH
A K H ^ = 180 0 − K A H ^ 2 = A B C ^ h a y K H / / B C .
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔABC có AH/AC=AK/AB
nên HK//BC
=>BKHC là hình thang
mà BH=CK
nên BKHC là hình thang cân