Bất phương trình mx > 3 + m vô nghiệm khi:
A. m = 0
B. m > 0
C. m < 0
D. m ≠ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BPT đã cho vô nghiệm khi và chỉ khi: \(x^2-mx+m+3\ge0\) nghiệm đúng với mọi x
\(\Rightarrow\left\{{}\begin{matrix}a=1>0\\\Delta=m^2-4\left(m+3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m^2-4m-12\le0\)
\(\Rightarrow-2\le m\le6\)
a.
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(3m-3\right)>0\\x_1+x_2=\frac{2\left(m-1\right)}{m+1}>0\\x_1x_2=\frac{3m-3}{m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\left(m-1\right)\left(m+2\right)< 0\\\frac{m-1}{m+1}>0\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2< m< 1\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-2< m< -1\)
b. Không rõ đề
c. \(\Delta'=\left(m+1\right)^2-\left(m+7\right)< 0\)
\(\Leftrightarrow m^2+m-6< 0\Leftrightarrow-3< m< 2\)
d. \(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m+7\right)\ge0\\x_1+x_2=-2\left(m+1\right)< 0\\x_1x_2=m+7>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-6\ge0\\m>-1\\m>-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\le-3\\m\ge2\end{matrix}\right.\\m>-1\\m>-7\end{matrix}\right.\) \(\Rightarrow m\ge2\)
Chọn A.
Với m = 0, bất phương trình trở thành 0.x < 3 + 0 ⇒ 0 > 3 (vô lý)
Bất phương trình vô nghiệm khi m = 0.