K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

Chọn A.

Ta có 

Phương trình đã cho thành 

đây là phương trình đẳng cấp, ta có thể chia cả hai vế cho b > 0 như sau:

+) TH1.

+) TH2.

 

Do đó 

14 tháng 6 2017

Xét phương trình |x – 3| = 1

TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3

Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)

TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3

Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)

Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng

|x – 1| = 0 ó x – 1 = 0  ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.

Vậy có 1 khẳng định đúng

Đáp án cần chọn là: B

15 tháng 5 2021

              Bài làm :

a) Thay m=-5 vào PT ; ta được :

\(x^2-2x-8=0\)

\(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)

=> PT có 2 nghiệm phân biệt :

\(\hept{\begin{cases}x_1=\frac{1+\sqrt{9}}{1}=4\\x_2=\frac{1-\sqrt{9}}{1}=-2\end{cases}}\)

b) Đk để PT có 2 nghiệm phân biệt :

\(\Delta'>0\Leftrightarrow\left(-1\right)^2-1.\left(m-3\right)=1-m+3=4-m>0\)

\(\Rightarrow m< 4\)

Khi đó ; theo hệ thức Vi-ét ; ta có :

\(\hept{\begin{cases}x_1+x_2=2\left(1\right)\\x_1x_2=m-3\end{cases}}\)

Mà : 

\(x_1=3x_2\Rightarrow x_1-3x_2=0\left(2\right)\)

Từ (1) và (2) ; ta có HPT :

\(\hept{\begin{cases}x_1+x_2=2\\x_1-3x_2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1=\frac{3}{2}\\x_2=\frac{1}{2}\end{cases}}\)

\(\Rightarrow x_1x_2=\frac{3}{4}\Rightarrow m=\frac{3}{4}+3=\frac{15}{4}\left(TMĐK\right)\)

Vậy m=15/4 thì ...

4 tháng 6 2021

a,x\(^2\)-2x+m-3=0 (*)

thay m=-5 vào pt (*) ta đk:

x\(^2\)-2x+(-5)-3=0⇔x\(^2\)-2x-8=0

                       Δ=(-2)\(^2\)-4.1.(-8)=36>0

      ⇒pt có hai nghiệm pb

         \(x_1=\dfrac{2+\sqrt{36}}{2}=4\) , \(x_2=\dfrac{2-\sqrt{36}}{2}=-2\)

vậy pt đã cho có tập nghiệm S=\(\left\{4;-2\right\}\)

b,\(x^2-2x+m-3=0\) (*)

Δ=(-2)\(^2\)-4.1.(m-3)=4-4m+12=16-4m

⇒pt luôn có hai nghiệm pb⇔Δ>0⇔16-4m>0⇔16>4m⇔m<4

với m<4 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét  ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=m-3\end{matrix}\right.\)       (1) ,(2)

\(x_1,x_2\) TM \(x_1=3x_2\) (3)

từ (1) và (3) ta đk:

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2+x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1}{2}\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1}{2}\\x_1=\dfrac{3}{2}\end{matrix}\right.\)

thay \(x_1=\dfrac{3}{2},x_2=\dfrac{1}{2}\) vào (2) ta đk:

\(\dfrac{3}{2}.\dfrac{1}{2}=m-3\Leftrightarrow3=4m-12\Leftrightarrow4m=15\Leftrightarrow m=\dfrac{15}{4}\) (TM)

vậy m=\(\dfrac{15}{4}\) thì pt (*) có hai nghiệm pb \(x_1,x_2\) TMĐK \(x_1=3x_2\)

 

17 tháng 5 2021

a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_-