K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Đáp án đúng : C

22 tháng 10 2023

1: Số mặt bên là 4

\(SAB;SAD;SBC;SCD\)

2: Số cạnh đáy là 4

AB,BC,CD,DA

3: SA và BC là hai đường thẳng chéo nhau

4: 4 đỉnh: A,B,C,D

5: Có 7 mặt: \(SAB;SAD;SBC;SCD;SAC;SBD;ABCD\)

6C

5 tháng 2 2018

Đáp án B.  

19 tháng 9 2017

14 tháng 3 2019

29 tháng 1 2018

Đáp án D

q5FijdapT5kR.png

Diện tích hình chữ nhật ABCD  S = 2a2, chiều cao SA =a.

Vậy thể tích khối chóp S.ABCD là V = 1 3 . 2 a 2 . a = 2 3 a 3

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);SB \subset \left( {SAB} \right) \Rightarrow BC \bot SB\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow CD \bot SD\end{array}\)

Xét tam giác SAB có

\(SA \bot AB\left( {SA \bot \left( {ABCD} \right)} \right)\)

\( \Rightarrow \) Tam giác SAB vuông tại A

Xét tam giác SBC có

\(SB \bot BC\)

\( \Rightarrow \) Tam giác SBC vuông tại B

Xét tam giác SCD có

\(SD \bot CD\)

\( \Rightarrow \) Tam giác SCD vuông tại D

Xét tam giác SAD có

\(SA \bot AD\left( {SA \bot \left( {ABCD} \right)} \right)\)

\( \Rightarrow \) Tam giác SAD vuông tại A

8 tháng 4 2017

11 tháng 5 2017

Đáp án C

14 tháng 4 2019

15 tháng 8 2019

Đáp án B

 

Do S A ⊥ A B C D

⇒ V S A B C D = 1 3 S A . d t A B C D = 1 3 S A . A B . B C = 1 3 a 3 .2 a . a = 2 a 3 3 3