Cho tam giác ABC. Từ M là 1 điểm bất kì trong tam giác, ta kẻ MD vuông BC, ME vuông AC, MF vuông AB.
CMR: \(BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)
* 0 cần vẽ hình, các bạn giải đầy đủ giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pi-ta-go vào tam giác vuông BDM, ta có:
BM2 = BD2 + DM2 => BD2 = BM2 – DM2 (1)
Áp dụng định lí Pi-ta-go vào tam giác vuông CEM, ta có:
CM2 = CE2 + EN2 => CE2 = CM2 – EM2 (2)
Áp dụng định lí Pi-ta-go vào tam giác vuông AFM, ta có:
AM2 = AF2 + FM2 => AF2 = AM2 – FM2 (3)
Cộng từng vế của (1), (2) và (3) ta có:
BD2 + CE2 + AF2 = BM2 – DM2 + CM2 – EM2 + AM2 – FM2 (4)
Áp dụng định lí Pi-ta-go vào tam giác vuông BFM, ta có:
BM2 = BF2 + FM2 (5)
Áp dụng định lí Pi-ta-go vào tam giác vuông CDM, ta có:
CM2 = CD2 + DM2 (6)
Áp dụng định lí Pi-ta-go vào tam giác vuông AEM, ta có:
AM2 = AE2 + EM2 (7)
Thay (5), (6), (7) vào (4) ta có:
BD2 + CE2 + AF2
= BF2 + FM2 – DM2 + CD2 + DM2 – EM2 + AE2 + EM2 – FM2
= DC2 + EA2 + FB2
Vậy BD2 + CE2 + AF2 = DC2 + EA2 + FB2
Kí hiệu như trên hình.
Ta có : \(AF^2+MF^2=AE^2+EM^2=AM^2\)
\(BD^2+MD^2=BF^2+MF^2=BM^2\)
\(ME^2+EC^2=MD^2+DC^2=MC^2\)
Cộng các đẳng thức trên theo vế
\(\left(BD^2+CE^2+AF^2\right)+\left(MF^2+MD^2+ME^2\right)=\left(DC^2+EA^2+FB^2\right)+\left(EM^2+MF^2+MD^2\right)\)
\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)
Bài 2.
Áp dụng định lí Pytago ta có :
\(AM^2=AF^2+FM^2=AE^2+ME^2\)
\(BM^2=BD^2+MD^2=MF^2+BF^2\)
\(MC^2=ME^2+EC^2=MD^2+DC^2\)
\(\Rightarrow AF^2+FM^2+BD^2+MD^2+ME^2+EC^2=AE^2+ME^2+MF^2+BF^2+MD^2+DC^2\)
\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)
△DMC vuông tại D => DC2= MC2 - MD2
△AME vuông tại E => EA2 = AM2 - ME2
△BMF vuông tại F => BF2 = BM2 - MF2
Suy ra DC2 + EA2 + BF2 = MC2 - MD2 + AM2 - ME2 + BM2 - MF2 (1)
△BDM vuông tại D => BD^2 = BM^2 - MD^2
△CME vuông tại E => CE^2 = MC^2 - ME^2
△AMF vuông tại F => AF^2 = AM^2 - MF^2
Suy ra BD2 + CE2 + AF2 = BM2 - MD2 + MC2 - ME2 + AM2 - MF2 (2)
Từ (1) và (2) => BD2 + CE2 + AF2 = DC2 + EA2 + FB2