Trên mặt chất lỏng có hai nguồn kết hợp, dao động cùng pha theo phương thẳng đứng tại hai điểm A và B cách nhau 4cm. Biết bước sóng là 0,2cm. Xét hình vuông ABCD, số điểm có biên độ cực đại nằm trên đoạn CD là
A. 15
B. 17
C. 41
D. 39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
+ Bước sóng của sóng trên:
+ Dựa vào định lí Pytago ta tính nhanh được:
+ Hiệu đường đi của sóng tại B:
+ Hiệu đường đi của sóng tại M:
+ Hai nguồn dao động ngược pha nên số cực đại trên BM thỏa mãn:
Có 19 giá trị k thỏa mãn nên có 19 cực đại trên BM
Đáp án C
+ Bước sóng của sóng trên:
+ Dựa vào định lí Pytago ta tính nhanh được:
+ Hiệu đường đi của sóng tại B:
+ Hiệu đường đi của sóng tại M:
+ Hai nguồn dao động ngược pha nên số cực đại trên BM thỏa mãn:
Có 19 giá trị k thỏa mãn nên có 19 cực đại trên BM
Chọn đáp án D
Một Hypybol cực đại sẽ cắt AB tại hai điểm đường thẳng CD tại 2 điểm (trừ trường hợp hypybol cắt C tại 1 điêm). Vì trên d có 13 điểm đao động với biên độ cực đại và A C < A B 2 nên C là điểm thuộc cực đại bậc xa trung tâm nhất sẽ thuộc cực đại bậc 7.
Do đó ta có 7 λ = d 2 − d 1 ⇔ 7 λ = 26 − 4 , 6 − 4 , 6 ⇒ λ = 2 , 4 c m
Tốc độ truyền sóng là v = λ f = 2 , 4.25 = 60 c m
Đáp án: A
HD Giải: λ = 300 50 = 6cm
Số điểm dao động với biên độ cực đại, ta có:
-AB < kλ < AB
<=> -20 < 6k < 20
<=> - 3,3 < k < 3,3
Suy ra trên AB có 7 cực đại
$\lambda = \dfrac{3}{2}$
Vị trí cực đại thoả mãn: $(20-20\sqrt {2} \le (k+0,5)\lambda \le 20 \Rightarrow $ số $k=19$
Vậy có 19 điểm dao động biên độ cực đại trên đoạn AD.
Chọn đáp án D.
Không mất tính tổng quát giả sử λ = 1.
Ta có:
Vì trên AB có 11 vị trí cực đại nên suy ra 5 < λ < 6.
(Dựa vào các đáp án suy ra chỉ có 5,3λ thỏa mãn).
Đáp án: B
HD Giải:
Hai nguồn đồng pha nên điểm dao động với biên độ cực đại thỏa mãn:
d2 – d1 = k.λ
Số điểm dao động với biên độ cực đại trên đoạn CD thỏa mãn:
<=>
<=>
có 17 cực đại