cho hs y= x3/3-2x2+3x+2/3 tọa độ điểm cực đjai của đt hàm số là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Tập xác định D = R.
Ta có y’ = x2 – 4x + 3, y’ = 0
Bảng biến thiên
Tọa độ điểm cực đại của hàm số là (1;2).
Chọn D
+ T a c ó : y ' = 3 x 2 - 4 x + 1
Hàm số đạt cực tiểu tại x = 1 ⇒ y C T = 3
Đáp án D
Ta có y ' = 3 x 2 - 3 ⇒ y ' ' = 6 x , y ' = 0 ⇔ x = ± 1 → y ' ' 1 > 0 y ' ' - 1 < 0 ⇒ hàm số đạt cực tiểu tại x = 1. ⇒ Điểm cực tiểu A(1;0)
Đáp án D
Ta có
Mặt khác
Tọa độ cực tiểu của đồ thị hàm số là (1;0)
Chọn B.
Do đó hàm số có cực đại là (1;2), cực tiểu là 3 ; 2 3 .
Đáp án là C
• Hàm số (I) là hàm nhất biến nên không có cực trị.
• Hàm số (II) có phương trình y'=2 có 2 nghiệm phân biệt nên có 2 cực trị.
Hàm số (III) có a.b=-2<0 nên có 3 cực trị.
Từ đó suy ra hàm số đạt cực tiểu tại x 1 = 1, đạt cực đại tại x 2 = -1
Suy ra S = x 1 + 2 x 2 = -1
Chọn A.
\(y'=x^2-4x+3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(\Rightarrow\) Tọa độ điểm cực đại là \(\left(1;2\right)\)