K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Ta có: 

Chọn B

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)

Với \(x = 2\) thì \(y = {\log _2}2 = 1\)

Với \(x = 4\) thì \(y = {\log _2}4 = 2\)

b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}=\dfrac{a^2\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{4}{5}}}{a^{\dfrac{1}{4}}}=\dfrac{a^{\dfrac{47}{15}}}{a^{\dfrac{1}{4}}}=a^{\dfrac{173}{60}}\)

\(\Rightarrow log_a\left(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}\right)=log_a\left(a^{\dfrac{173}{60}}\right)=\dfrac{173}{60}\)

\(a^{2log_a\left(\dfrac{\sqrt{105}}{30}\right)}=a^{log_a\left(\dfrac{7}{60}\right)}=\dfrac{7}{60}\)

Vậy \(B=\dfrac{173}{60}+\dfrac{7}{60}=\dfrac{180}{60}=3\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Ta có \(\left\{\begin{matrix} \log_ab=\frac{b}{4}\\ \log_2a=\frac{16}{b}\end{matrix}\right.\Rightarrow 4=\log_2a.\log_ab=\log_2b\)

\(\Rightarrow b=16\).

\(\log_2a=\frac{16}{b}=1\Rightarrow a=2\)

Do đó \(a+b=18\). Đáp án D.

13 tháng 11 2017

em chưa có học

\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)

Chọn B

NV
18 tháng 3 2023

\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)

\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)

18 tháng 8 2023

a) \(log_216=4\)

b) \(log_3\dfrac{1}{27}=-3\)

c) \(log1000=3\)

d) \(9^{log_312}=144\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Đặt \(\left\{\begin{matrix} \log_ab=x\\ \log_bc=y\\ \log_ca=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \log_ba=\frac{1}{x}\\ \log_cb=\frac{1}{y}\\ \log_ac=\frac{1}{z}\end{matrix}\right. \). và \(xyz=1\)

Do \(a,b,c>1\Rightarrow x,y,z>0\)

Ta có:

\(P=\log_a(bc)+\log_b(ac)+4\log_c(ab)\)

\(=\log_ab+\log_ac+\log_ba+\log_bc+4\log_ca+4\log_cb\)

\(=x+\frac{1}{z}+\frac{1}{x}+y+4z+\frac{4}{y}\)

Áp dụng BĐT Cô-si cho các số dương:

\(\left\{\begin{matrix} x+\frac{1}{x}\geq 2\sqrt{1}=2\\ y+\frac{4}{y}\geq 2\sqrt{4}=4\\ \frac{1}{z}+4z\geq 2\sqrt{4}=4\end{matrix}\right.\) \(\Rightarrow P\geq 2+4+4=10\)

\(\Rightarrow m=10\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\rightarrow x=1\\ y=\frac{4}{y}\rightarrow y=2\\ \frac{1}{z}=4z\rightarrow z=\frac{1}{2}\end{matrix}\right.\) (thỏa mãn)

Suy ra \(n=\log_bc=y=2\)

\(\Rightarrow m+n=12\)