K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

a,  A D B ^  là góc nội tiếp trên đường kính AB =>  A D ⊥ B D

b, Do  A D C ^ = 90 0  nên DÎ đường tròn (k; A C 2 )

c, ∆IBD cân tại I có  B ^ = 60 0 =>  ∆IBD đều =>  B I D ^ = 60 0

=>  l B D ⏜ = π . 5 2 . 60 180 = 5 6 π cm

24 tháng 10 2021

a: Xét (I) có 

ΔAHC nội tiếp đường tròn

AC là đường kính

Do đó: ΔAHC vuông tại H

hay AH\(\perp\)BC

a: góc KHB=1/2*180=90 độ

góc KAI+góc KHI=180 độ

=>KAIH nội tiếp

góc CHB=góc CAB=90 độ

=>CAHB nội tiếp

b: Xét ΔCIB có

CH,BA là đường cao

CH cắt BA tại K

=>K là trực tâm

=>IK vuông góc BC

c: Xét ΔIHC vuông tại H và ΔIAB vuông tại A có

góc I chung

=>ΔIHC đồng dạng với ΔIAB

=>IH/IA=IC/IB

=>IH*IB=IA*IC

a) Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường trung tuyến ứng với cạnh BC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(3)

Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng

\(\Leftrightarrow A,O,H,D\) thẳng hàng

hay AD là đường kính của \(\left(O\right)\)

a:

góc BDC=góc BEC=1/2*sđ cung BC=90 độ

=>CD vuông góc AB và BE vuông góc AC

Xét ΔABC có

CD,BE là đường cao

CD cắt BE tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

c: góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

d: ID=IE

OD=OE

=>OI là trung trực của DE

=>OI vuông góc DE