trên đường tròn tâm o có một cung ab và s là điểm chính giữa của cung đó trên dây ab lấy 2 điểm e và h các đường thẳng sh và se cắt đường tròn theo thứ tụ tại c và d chứng minh ehcd là 1tuws giác nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S\) là điểm chính giữa cung \(\widehat{AB}\)
\(\Rightarrow\widehat{SA}=\widehat{SB}\left(1\right)\)
\(\widehat{DEB}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}\right)\)( tính chất có đỉnh ở bên trong đường tròn ) \(\left(2\right)\)
\(\widehat{DCS}=\dfrac{1}{2}sđ\widehat{DAS}\) ( tính chất góc nội tiếp ) hay \(\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DA}+sd\widehat{SA}\right)\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}+sd\widehat{DA}+sđ\widehat{SA}\right)\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sđ\widehat{SA}+sđ\widehat{DA}+sđ\widehat{BS}\right)=\dfrac{360^o}{2}=180^o\)
Hay \(\widehat{DEH}+\widehat{DCH}=180^o\)
Vậy: tứ giác EHCD nội tiếp được trong một đường tròn.