giải pt \(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2003}-\sqrt[3]{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt đúng theo thứ tự đề bài là a;b;c;d(a;c>0)
\(\Rightarrow a^2+b^3=c^2+d^3\)
theo đề bài ta có: a-b=c-d=>a-c=b-d
ta đc hpt:\(\int^{a^2+b^3=c^2+d^3}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d^2+bd+b^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c+b^2+b+d^2\right)=0\left(1\right)}_{a-c=b-d}\)
\(b^2+bd+d^2=\left(b+\frac{1}{2}d\right)^2+\frac{3}{4}d^2\ge0\)
Dấu "=" xảy ra <=> b=d=0
vì a;c>0 nên a+c>0
Dấu "=" xảy ra <=> a=c=0
=> \(a+c+b^2+bc+d^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=d=0 -> vô nghiệm
Từ (1) => a=c rồi tự làm tiếp
a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)
\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)
\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)
Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)
Phương trình trở thành:
\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)
\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)
Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(
b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)
Pt trở thành:
\(a+10\left(\frac{a^2-5}{4}\right)=13\)
\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)
\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)
c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)
\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)
Đặt \(x\sqrt{2x^2+4}=a\) ta được:
\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)
Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)
\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)
\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)
\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)
b/ ĐKXĐ: ...
\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)
Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)
\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)
Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)
\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)
\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)
\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)
\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)
ko phải khó mà là quá khó
cậu kiếm đâu đấy........