Biến đổi các biểu thức sau thành phân thức:
a) M = 4 − 4 n m + n 2 m 2 1 m − 2 n với m ≠ 0 , n ≠ 0 , n ≠ 2 m ;
b) N = 1 3 + x 1 − x x + 3 với x≠−3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) m m − 2 − m m + 2 m + 2 m m − 2 m = m + 2 m − 2
b) 3 5 − 3 m + 1 16 − m 2 m 2 + 2 m + 1 = 3 m − 12 5 ( m − 1 ) 16 − m 2 ( m + 1 ) 2 = − 3 ( m + 1 ) 5 ( m + 4 )
(x^m+2)+(x^m) = 2xm+2 = 2(xm+1)
(x^x+1)-(x^x)-1 = xx+1-xx-1 = 0
(m^4)-(n^4) = (m2)2-(n2)2 = (m2-n2)(m2+n2)
a) Ta có M = y 2 − 8 y + 15 4 y : y 2 − 7 y + 12 2 y = y − 5 2 ( y − 4 )
b) Ta có N = 27 b 3 − 1 9 b 2 : 9 b 2 + 3 b + 1 9 b 2 = 3 b − 1
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
Bài 1:
e: Ta có: \(x\left(y-x\right)^2-x^2+2xy-y^2\)
\(=x\left(x-y\right)^2-\left(x-y\right)^2\)
\(=\left(x-y\right)^2\cdot\left(x-1\right)\)
Bài 2:
a: Ta có: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\cdot\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0
a: \(x^2-8x+16x=x^2+8x=x\left(x+8\right)\)
b: \(4x^2-8xyz+4y^2=4\left(x^2-2xyz+y^2\right)\)
c: \(ab^2+\dfrac{1}{4}a^2b^4+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)
\(m^2+\frac{1}{m^2}\ge2\sqrt{m^2.\frac{1}{m^2}}=2.\)(BĐT Cauchy)
Tương tự \(n^2+\frac{1}{n^2}\ge2;p^2+\frac{1}{p^2}\ge2.\)
\(\Rightarrow VT\ge6=VP\)
Mà GT, VT=VP=6
=> \(m^2=\frac{1}{m^2},n^2=\frac{1}{n^2},p^2=\frac{1}{p^2}\Leftrightarrow m^4=1,n^4=1,p^4=1\)
=>A=3
a) Ta có M = ( 2 m − n ) 2 m 2 . mn n − 2 m = ( n − 2 m ) n m
b) Ta có N = 1 3 + x ( x + 3 ) 3 = x 2 + 3 x + 1 3