K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

a) Ta có M = ( 2 m − n ) 2 m 2 . mn n − 2 m = ( n − 2 m ) n m  

b) Ta có N = 1 3 + x ( x + 3 ) 3 = x 2 + 3 x + 1 3

19 tháng 8 2018

a)     m m − 2 − m m + 2 m + 2 m m − 2 m = m + 2 m − 2

b)     3 5 − 3 m + 1 16 − m 2 m 2 + 2 m + 1 = 3 m − 12 5 ( m − 1 ) 16 − m 2 ( m + 1 ) 2 = − 3 ( m + 1 ) 5 ( m + 4 )

17 tháng 7 2017

(x^m+2)+(x^m) = 2xm+2 = 2(xm+1)

(x^x+1)-(x^x)-1 = xx+1-xx-1 = 0

(m^4)-(n^4) = (m2)2-(n2)2 = (m2-n2)(m2+n2)

8 tháng 8 2017

a) Ta có M = y 2 − 8 y + 15 4 y : y 2 − 7 y + 12 2 y = y − 5 2 ( y − 4 )  

b) Ta có  N = 27 b 3 − 1 9 b 2 : 9 b 2 + 3 b + 1 9 b 2 = 3 b − 1

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

Bài 1: 

e: Ta có: \(x\left(y-x\right)^2-x^2+2xy-y^2\)

\(=x\left(x-y\right)^2-\left(x-y\right)^2\)

\(=\left(x-y\right)^2\cdot\left(x-1\right)\)

Bài 2: 

a: Ta có: \(M=m^2\left(m+n\right)-n^2m-n^3\)

\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)

\(=\left(m+n\right)^2\cdot\left(m-n\right)\)

\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)

=0

a: \(x^2-8x+16x=x^2+8x=x\left(x+8\right)\)

b: \(4x^2-8xyz+4y^2=4\left(x^2-2xyz+y^2\right)\)

c: \(ab^2+\dfrac{1}{4}a^2b^4+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)

 

12 tháng 3 2019

\(m^2+\frac{1}{m^2}\ge2\sqrt{m^2.\frac{1}{m^2}}=2.\)(BĐT Cauchy)

Tương tự \(n^2+\frac{1}{n^2}\ge2;p^2+\frac{1}{p^2}\ge2.\)

\(\Rightarrow VT\ge6=VP\)

Mà GT, VT=VP=6

=> \(m^2=\frac{1}{m^2},n^2=\frac{1}{n^2},p^2=\frac{1}{p^2}\Leftrightarrow m^4=1,n^4=1,p^4=1\)

=>A=3

12 tháng 3 2019

Cái bđt đầu không phải Cô-si vì Cô-si là cho 2 số dương, cái đó là từ hằng đẳng thức mà ra

Ta có : \(\left(m-\frac{1}{m}\right)^2\ge0\)

\(\Leftrightarrow m^2-2+\frac{1}{m^2}\ge0\)

\(\Leftrightarrow m^2+\frac{1}{m^2}\ge2\)

Mấy cái kia làm giống Witch Rose là đc