K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

Xét tam giác ABC vuông tại A có

SABC = 1/2 AB.AC

Xét tam giác ABC có AH là đường cao

⇒ SABC = 1/2 AH.BC

⇒ 1/2 AB.AC = 1/2 AH.BC ⇒ AB.AC = AH.BC hay bc = ah

7 tháng 1 2019

Xét tam giác ABC vuông tại A có

SABC = 1/2 AB.AC

Xét tam giác ABC có AH là đường cao

⇒ SABC = 1/2 AH.BC

⇒ 1/2 AB.AC = 1/2 AH.BC ⇒ AB.AC = AH.BC hay bc = ah

 

2:Trọng tâm(điểm này được gọi là G)

3:Tham khảo:https://giaibaitap123.com/giai-toan-lop-7-tap-2/bai-9-nghiem-cua-da-thuc-mot-bien/

 

5:Đối với tam giác thường:

CC

CGC

GCG

Đối với tam giac vuông là:

CHGN

6:Tham khảo:

https://hanghieugiatot.com/cach-chung-minh-duong-trung-truc-lop-7

20 tháng 5 2022

Câu 1: Để xác định bậc của một đa thứ , bạn cần làm là tìm số mũ lớn nhất trong đa thức đó

Câu 2: Giao của 3 đường trung tuyến được gọi là trọng tâm

Câu 3: Nghiệm của đa thức là a nếu tại x=a đa thứ P(x) có giá thị bằng 0=> để tìm nghiệm của đa thức 1 biến, hãy cho đa thức đó bằng 0 và giải như cách giải phương trình 1 ẩn

Câu 4: Hai đa thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phân biến. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Các số khác 0 được gọi là những đơn thức đồng dạng

Câu 5:

* Đối với tam giác thường

+ Trường hợp cạnh-cạnh-cạnh

+Trường hợp cạnh-góc-cạnh

+Trường hợp góc-cạnh-góc

*Đối với tam giác vuông

+ Trường hợp cạnh góc vuông-cạnh góc vuông

+Trường họp cạnh góc vuông- góc nhọn
+ Trường hợp cạnh huyền-góc nhọn

Câu 6:

Phương pháp 1: Chúng ta phải phải chứng minh rằng d\(\perp\)AB tại ngay trung điểm của AB

Phương pháp 2: Chứng minh rằng 2 điểm trên d cách đề 2 điểm A và B

Phương pháp 3: Dùng tính chất đường trung tuyến , đường cao

Phương pháp 4: Áp dụng tính chất đối xúng của trục

Phương pháp 5: Áp dụng tính chất nối tâm của 2 đường tròn cắt nhau ở 2 điểm

a: Xét ΔBEC và ΔAEFcó

góc BEC=góc AEF

góc ECB=góc EFA

=>ΔBEC đồng dạng với ΔAEF

b: Xét ΔFEA và ΔFCD có

góc FEA=góc FCD

góc F chung

=>ΔFEA đồng dạng với ΔFCD

 

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMNP

b: ΔMNP vuông tại M co MH vuông góc NP

nên MH^2=HN*HP

 

Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc ADH chung

=>ΔAHD đồng dạng với ΔBAD