Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ:
a) 36 x 6 − 24 x 3 + 4 ;
b) ( x 2 - 1 ) 2 - 18(x + l)(x -1);
c) (x + l)(x + 3)(x + 5)(x + 7) +15;
d) ( x 2 + x + 4 ) 2 + 8x( x 2 + x + 4) + 15 x 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x^2+6x\right)\left(x^2+6x+8\right)-9\)
\(=\left(x^2+6x\right)^2+8\left(x^2+6x\right)-9\)
\(=\left(x^2+6x+9\right)\left(x^2+6x-1\right)\)
\(=\left(x+3\right)^2\cdot\left(x^2+6x-1\right)\)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= x4 + 10x3 + 35x2 + 50x + 24 - 24
= x4 + 10x3 + 35x2 + 50x
( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24
= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24
Đặt t = x2 + 5x + 5
=> ( t - 1 ). ( t + 1 ) - 24
= t2 - 1 - 24
= t2 - 25
= ( t - 5 ). ( t + 5 )
= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )
= ( x2 + 5x ) . ( x2 + 5x + 10 )
= x. ( x + 5 ) . ( x2 + 5x + 10 )
\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\)
=
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\) (1)
Đặt x2 + x +1 = t
Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) (2)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = y
Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
Ta có : (x+2)(x+4)(x+6)(x+8) + 16
=[(x+2).(x+8)].[(x+4)(x+6)]+16
=(x2+10x+16).(x2+10x+24)+16 (1)
Đặt x^2+10x+16=a thì (1) trở thành:
a.(a+8)+16=a2+8a+16=(a+4)2=(x^2+10x+20)2
a. Đặt \(x^2-2y=a\)
ta có : \(\left(x^2-2y\right)^2-4\left(x^2-2y\right)-12=a^2-4a-12=a^2-6a+2a-12=\left(a-6\right)\left(a+2\right)\)
\(=\left(x^2-2y-6\right)\left(x^2-2y+2\right)\)
b. Đặt \(x+6=a\Rightarrow\left(x+3\right)\left(x+6\right)\left(x+9\right)+45=\left(a-3\right)a\left(a+3\right)+45\)
\(=a^3-9a+45\) nghiệm xấu quá không nhóm được ban ơi :((
đặt x^2+x = y
=> y^2 - 2y - 15
= y^2 - 2y + 1 - 16
= ( y - 1 )^2 - 16
= ( y - 1 )^2 - 4^2
= ( y - 1 - 4 ) x ( y-1+4)
=(y -5) (y+3)
= (x^2 +x-5) (x^2+x+3)
Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)
=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)