K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Rút gọn được Q = 1 Þ đpcm.

19 tháng 6 2017

Bài 1 : Rút gọn biểu thức :

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)

\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)

\(=-10\sqrt{2}+10-7+30\sqrt{2}\)

\(=20\sqrt{2}+3\)

19 tháng 6 2017

Bài 2:

a) ĐKXĐ : x # 4 ; x # - 4

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)

Vậy, để P = 2 thì x = 16.

1: Ta có: \(\sqrt{x^2-x+\frac{1}{4}}\)

\(=\sqrt{x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2}\)

\(=\sqrt{\left(x-\frac{1}{2}\right)^2}\)

\(=\left|x-\frac{1}{2}\right|\)

2: Ta có: \(\sqrt{x^2}+\sqrt{x^6}\)

\(=\sqrt{x^2}\cdot1+\sqrt{x^2}\cdot\sqrt{x^4}\)

\(=\sqrt{x^2}\cdot\left(1+\sqrt{x^4}\right)\)

\(=\left|x\right|\cdot\left(1+x^2\right)\)

3: Ta có: \(C=\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{2-2\cdot\sqrt{2}\cdot1+1}-\sqrt{4-2\cdot2\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{2}-1\right|-\left|2-\sqrt{2}\right|\)

\(=\sqrt{2}-1-2+\sqrt{2}\)

\(=2\sqrt{2}-3\)

12 tháng 4 2018

câu 2 làm tương tự câu 1 nha

10 tháng 8 2019

bài 1: a) \(A=\frac{\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)}{\frac{a+2}{a-2}}\)

\(A=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{a+2}{a-2}\)

\(A=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right)\cdot\frac{a-2}{a+2}\)

\(A=2\cdot\frac{a-2}{a+2}\left(a\ne0;a\ne\pm2\right)\)

b) để A = 1 => \(2\cdot\frac{a-2}{a+2}=1\)

=> 2a - 4 = a + 2

=> a = 6 (thỏa mãn)

10 tháng 8 2019

bài 2) a) ĐKXĐ: \(x\ne4\)

b) \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(\Leftrightarrow B=\frac{2\sqrt{x}+\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow B=\frac{2\sqrt{x}+4}{x-4}=\frac{2}{\sqrt{x}-2}\)

c) \(B=\frac{2}{\sqrt{3+2\sqrt{3}}-2}\) \(\approx3,69\)

(bạn tự bấm máy tính nhé nhưng theo mình thấy nếu x = 4 + 2\(\sqrt{3}\) hay \(3+2\sqrt{2}\) thì sẽ cho kết quả đẹp hơn, k biết bạn có nhầm đề k nữa!)

12 tháng 8 2018

a)đkxđ:\(x\ge0,x\ne4\)

P=\(\left(\dfrac{2}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{1}{\sqrt{x+2}}\)

\(=\left(\dfrac{2}{\left(\sqrt{x-2}\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\right):\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\sqrt{x}+2\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

14 tháng 2 2019

Các bn giúp mk vs nha ! Mk cảm ơn trước.hiuhihilolang

27 tháng 11 2018

1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

Vậy \(A=x\)

b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)

Vậy...

2/a,

\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)

\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)

\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)

\(=\dfrac{3x+2}{x\left(3x+2\right)}\)

\(=\dfrac{1}{x}\)

Vậy....

b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)

Vậy..

a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |x|=1/3 thì x=1/3 hoặc x=-1/3

Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)

Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)

c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)

=>\(x-1\in\left\{1;-1\right\}\)

=>x=2

d: Để Q=4 thì x^2=4x-4

=>x=2

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)