K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Vì O A ⊥ O C  nên A O C ^ = 90 ° . Trong góc AOC vẽ tia Ot sao cho O t / / A B .

Khi đó A ^ + A O t ^ = 180 °  (cặp góc trong cùng phía).

Suy ra A O t ^ = 180 ° − 130 ° = 50 ° .

Vì A O C ^ = 90 °  nên C O t ^ = 40 ° .

Ta có C ^ + C O t ^ = 140 ° + 40 ° = 180 ° .

Do đó CD // Ot (vì có cặp góc trong cùng phía bù nhau).

Suy ra AB // CD (vì cùng song song với Ot).

20 tháng 8 2023

Để chứng minh rằng AB//CD, ta cần sử dụng các thông tin đã cho về hình 4.16. Từ thông tin đã cho, ta biết rằng A = 130' và B = 140', và OA vuông góc với OB. Tuy nhiên, không có thông tin về các đỉnh khác của hình 4.16. Vì vậy, chúng ta không thể chứng minh rằng AB//CD chỉ dựa trên thông tin đã cho.

21 tháng 8 2023

oe

21 tháng 12 2019

a) Ba đường thẳng cắt nhau tại O tạo thành 6 tia. Số góc do 6 tia tạo ra là: 6.5 2 = 15  (góc).

b) Xét hai đường thẳng ABCD trong ba đường thẳng đã cho (h.1.11). Hai đường thẳng này tạo thành bốn góc không có điểm trong chung. Tổng của bốn góc này bằng 360 °  nên trong bốn góc đó phải tồn tại một góc lớn hơn hoặc bằng 90 ° .

Thật vậy, nếu mỗi góc đó đều nhỏ hơn 90 °  thì tổng của chúng nhỏ hơn 90 ° .4 = 360 ° : vô lí.

Giả sử góc tồn tại nói trên là góc BOD.

- Nếu B O D ^ > 90 °  thì A O C ^ = B O D ^ > 90 ° , bài toán đã giải xong.

- Nếu B O D ^ = 90 °  thì ta xét tiếp đường thẳng thứ ba MN đi qua O (h.1.12).

Giả sử tia ON nằm trong góc BOD. Khi đó góc BON là góc nhọn do đó A O N ^  là góc tù (vì B O N ^  và   A O N ^ là hai góc kề bù). Góc AON là góc tù thì góc BOM là góc tù (vì B O M ^ = A O N ^ ).

Vậy luôn tồn tại hai góc tù trong số 15 góc được tạo thành.

Chứng tỏ hai tia đối nhau

11 tháng 4 2022

undefined

a) Do \(AB//CD\Rightarrow AO//DN\)

Áp dụng định lí Ta-let cho tam giác \(IDN\) ta có \(\dfrac{OI}{IN}=\dfrac{AO}{DN}\)

\(\Rightarrow OI.ND=OA.IN\)

b) Do \(AB//CD\Rightarrow BO//CN\)

Áp dụng định lí Ta-let cho tam giác \(ICN\) ta có \(\dfrac{OI}{IN}=\dfrac{BO}{CN}\)

\(\Rightarrow\dfrac{AO}{DN}=\dfrac{BO}{CN}\left(=\dfrac{OI}{IN}\right)\) mà \(DN=CN\) (do \(N\) là trung điểm \(CD\))

\(\Rightarrow AO=BO\Rightarrow O\) là trung điểm \(AB\)

2 tháng 11 2022

  a) hình bình hành ABCD có:

O là giao điểm của AC và BD

=> O là trung điểm của AC và BD

xét tam giác AOM và tam giác NOC có:

AO= CO

góc A² = góc C¹ (so le trong)

góc O¹=góc O² (đối đỉnh)

=> tam giác AOM=tam giác CON(g.c.g) => OM =ON

=> M đối xứng với N qua O

b) tam giác AOM= tam giác CON nên

=> AM= CN, AM // CN

=> tứ giác AMNC là hình bình hành loading...  

 

 

 

 

 

 

 

 

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.a) Chứng minh tam giác ACE vuông cânb) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng Bài 2:Đường tròn tâm O và một dây AB của đường...
Đọc tiếp

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.

a) Chứng minh tam giác ACE vuông cân

b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?

c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng 

Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:

a) Góc BED = góc DAE

b) DE2 = DA.DB

Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD

 

0
26 tháng 2 2016

Trên cùng một nửa mặt phẳng bờ chứa đt xy, ta có x0y > y0z nên tia Oz nằm giữa hai tia Ox và Oy (1)

=> yOz + zOx = xOy

     zOx = 180 - 140 = 40

Trên cùng một nửa mặt phẳng bờ chứa đt xy, ta có x0y > xOt nên tia Ot nằm giữa hai tia Ox và Oy (2)

=> xOt + yOt = xOy

    yOt = 180 - 130 = 50

b) phải là chứng tỏ góc zOt là góc vuông chứ?

Từ 1 và 2 ta có: y0t + t0x = x0y

                         y0t + t0z + z0x = x0y

                         50 + t0z + 40 = 180

                         t0z = 90

=> t0z là góc vuông