Cho 8 x 3 – 64 = (2x – 4)(…). Biểu thức thích hợp điền vào dấu … là
A. 2 x 2 + 8x + 8
B. 2 x 2 + 8x + 16
C. 4 x 2 – 8x+ 16
D. 4 x 2 + 8x + 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+4x+4=\left(x+2\right)^2\)
b) \(x^2-8x+16=\left(x-4\right)^2\)
c) \(\left(x+5\right)\left(x-5\right)=x^2-25\)
g) \(\left(x-2\right)\left(x^2-2x+4\right)\)
\(=x^3-8\)
a: \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
c: \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)
\(\dfrac{1}{8}x^3-64=\left(\dfrac{1}{2}x-4\right)\left(\dfrac{1}{4}x^2+2x+16\right)\)
d: \(=\left(2x+5y\right)^3\)
a,x2-8x+16=(x-4)2
b,(x-5y)(x+5y)=x2-25y2
c,4x4-16=4(x2-2)(x2+2)
d,x2+4xy+4y2=(x+2y)2
ĐKXĐ; ...
a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)
\(P_{min}=5\) khi \(x=-2\)
b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)
\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)
\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)
\(=1-\left(x-1\right)^2\le1\)
\(Q_{max}=1\) khi \(x=1\)
Sửa lại câu d) là `25y^2`
`a)x^3-1`
`=(x-1)(x^2+x+1)`
`b)8x^3-y^3`
`=(2x)^3-y^3`
`=(2x-y)(4x^2+2xy+y^2)`
`c)x^2-8x+16`
`=x^2-2.x.4+4^2`
`=(x-4)^2`
`d)25y^2-1`
`=(5y)^2-1`
`=(5y-1)(5y+1(`
`e)27-8y^3`
`=3^3-(2y)^3`
`=(3-2y)(9+6y+4y^2)`
`f)2x^2-8x+8`
`=2(x^2-4x+4)`
`=2(x-2)^2`
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
Ta có
8 x 3 – 64 = ( 2 x ) 3 – 43 = ( 2 x – 4 ) ( 4 x 2 + 8 x + 16 )
Đáp án cần chọn là: D