K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

27 tháng 8 2017

14 tháng 1 2019

Đáp án là D

13 tháng 12 2017

Xét  

Vì đường thẳng y=x-1 cắt đồ thị f '(x) tại 4 điểm có hoành độ x=-1, x=1, x=2, x=3

Suy ra g(x) có ba điểm cực trị là x=-1, x=1, x=2, x=3

Theo giả thiết  có nên g(x)=0 có hai nghiệm phân biệt (là nghiệm đơn hoặc bội lẻ). Vậy hàm số y=|g(x)| có tổng cộng 3 + 2 = 5 điểm cực trị.

Chọn đáp án B.

*Chú ý số điểm cực trị của hàm số y=|g(x)| bằng tổng số điểm cực trị của f(x) và số nghiệm đơn (hoặc bội lẻ) của phương trình f(x)=0

Chọn đáp án B.

24 tháng 5 2019

Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.

 Dựa vào đồ thị hàm số y= f’(x) ; ta thấy đồ thị hàm số y= f’(x) là parabol có trục đối xứng là trục tung nên b= 0

+ Đồ thị hàm số y= f’(x)  đi qua 2 điểm (1; 5) và (0; 2)  ta tìm được: a=1 và c=2.

Suy ra: f’(x)  = 3x2+ 2 và f( x) = x3+ 2x+ d,

+ Do  đồ thị hàm số (C) đi qua gốc toạ độ nên 0=0+0+ d

Suy ra: d= 0.

 Khi đó ta có: f(x) =x3+ 2x và f( 3) –f(2) =21

Chọn D.

20 tháng 2 2019

Chọn C 

Trên  đoạn [ - 1; 1] đồ thị hàm số y= f’( x)  nằm phía trên trục hoành.

=> Trên  đoạn [ - 1; 1] thì f’( x) > 0.

=> Trên  đoạn [ - 1; 1] thì  hàm số y= f( x) đồng biến

31 tháng 12 2017

10 tháng 5 2017

 

Dựa vào đồ thị hàm số f'(x) suy ra đồ thị hàm số đồng biến trên khoảng (-3;-2), đồ thị hàm số nghịch biến trên khoảng 

Chọn B.

 

28 tháng 4 2019

3 tháng 2 2019

Đáp án D.

- Để vẽ đồ thị hàm số y = |f(x)| ta lấy đối xứng phần đồ thị hàm số nằm phía dưới trục hoành lên phía trên.

- Đồ thị hàm số y = |f(x)| có 3 điểm cực trị như hình vẽ: