K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

\(P=\left(\frac{2\left(\sqrt{x}+2\right)+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{x+2\sqrt{x}}{2\sqrt{x}}\) điều kiện x >0

\(P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}.\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}=1+\frac{4+x}{2\sqrt{x}}.\)

b) P = 3

\(\Leftrightarrow1+\frac{4+x}{2\sqrt{x}}=3\Leftrightarrow\frac{4+x}{2\sqrt{x}}=2\)

\(\Leftrightarrow4+x=4\sqrt{x}\Leftrightarrow4+x-4\sqrt{x}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

14 tháng 1 2016

Ngô Văn Tuyên cảm ơn bạn nha. Nhưng cho mình hỏi tí sao bạn lại tách ra thành \(1+\frac{4-x}{2\sqrt{x}}\)

giải thích hộ mình với nhé. Cảm ơn nhiều !!

14 tháng 7 2016

nhầm rồi, để làm lại

a/ \(P=\left[\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right]\)

      \(=\left[\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)

        \(=\frac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

       \(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}\)

          \(=\frac{4x}{\sqrt{x}-3}\)

b/ \(P=-1\Rightarrow\frac{4x}{\sqrt{x}-3}=-1\Rightarrow3-\sqrt{x}=4x\Rightarrow4x+\sqrt{x}-3=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(l\right)\\\sqrt{x}=\frac{3}{4}\end{cases}\Rightarrow x=\frac{9}{16}}\)

                                                                 Vậy x = 9/16

14 tháng 7 2016

ĐKXĐ: x > 0 và \(x\ne4\)

a/ \(P=\left[\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right]\)

    \(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}\left(\sqrt{x}-1\right)-2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

        \(=\frac{8\sqrt{x}-4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-\sqrt{x}-2}\)

        \(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

          \(=\frac{4x}{\left(2+\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)

b/ \(P=-1\Rightarrow\frac{4x}{x+3\sqrt{x}+2}=-1\Rightarrow-x-3\sqrt{x}-2=4x\)

                        \(\Rightarrow-5x-3\sqrt{x}-2=0\left(1\right)\), vì (1) > 0 => vô nghiệm

                Vậy k có giá trị nào của x thỏa P = -1

20 tháng 10 2023

1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)

2:

a: \(P=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: \(2P=2\sqrt{x}+5\)

=>\(P=\sqrt{x}+\dfrac{5}{2}\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{5}{2}=\dfrac{2\sqrt{x}+5}{2}\)

=>\(\sqrt{x}\left(2\sqrt{x}+5\right)=2\sqrt{x}+2\)

=>\(2x+3\sqrt{x}-2=0\)

=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

=>\(2\sqrt{x}-1=0\)

=>x=1/4

20 tháng 10 2023

Bạn có thể làm hộ mình câu c được không?Nếu được thì mình cảm ơn bạn nhiều!

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
28 tháng 8 2017

1. 

= -(13 + 3 căn7 ) / 2  +  -(7 + 3 căn7 ) / 2 

=  -7 + 3 căn7

20 tháng 10 2023

a: \(P=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\)

\(=\dfrac{1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-2}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b: P=1/4

=>\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)

=>\(4\left(\sqrt{x}-2\right)=3\sqrt{x}\)

=>\(4\sqrt{x}-8-3\sqrt{x}=0\)

=>\(\sqrt{x}=8\)

=>x=64

c: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{\sqrt{4+2\sqrt{3}}-2}{3\cdot\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{2-\sqrt{3}}{3}\)

12 tháng 7 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)