Cho hàm số y = a x 3 + b x 2 + c x + d đạt cực trị tại các điểm x 1 , x 2 thỏa mãn x 1 ∈ - 1 ; 0 , x 2 ∈ 1 ; 2 . Biết hàm số đồng biến trên ( x 1 , x 2 ). Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Trong các khẳng định sau, khẳng định nào đúng?
A. a < 0 , b > 0 , c > 0 , d < 0
B. a < 0 , b < 0 , c > 0 , d < 0
C. a > 0 , b > 0 , c > 0 , d < 0
D. a < 0 , b > 0 , c < 0 , d < 0
Đáp án A
Đồ thị cắt trục tung tại điểm có tung độ âm ⇒ y 0 = d < 0
Ta có y ' = 3 a x 2 + 3 b x + c , y ' = 0 ⇔ x 1 + x 2 = - 2 b 3 a x 1 . x 2 = c 3 a . Mà y ' > 0 , ∀ x ∈ x 1 , x 2 ⇒ a < 0
Mặt khác x 1 + x 2 > 0 x 1 . x 2 < 0 ⇒ - 2 b 3 a > 0 c 3 a < 0 ⇔ b > 0 c < 0 . Vậy a < 0 , b > 0 , c > 0 , d < 0 .