K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Đáp án C

Đặt 2 x = a > 0 7 x = b > 0 , khi đó  2 . 7 x + 2 + 7 . 2 x + 2 ≤ 351 14 x ⇔ 98 b 2 + 28 a 2 ≤ 351 a b

⇔ 28 a b 2 - 351 . a b + 98 ≤ 0 ⇔ 2 7 ≤ a b ≤ 49 4 ⇔ 2 7 ≤ 2 7 x 2 ≤ 2 7 - 2 ⇔ x ∈ - 4 ; 2 .

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

8 tháng 2 2018

Đáp án D

19 tháng 12 2019

Câu 1 Mã: 78331Giải bất phương trình 2x+1x+2≤12x+1x+2≤1−2≤x≤−1−2≤x≤−1−2≤x<1−2≤x<1−2<x≤1−2<x≤1Vô nghiệmCâu 2 Mã: 78319Bất phương trình (3x+1)(6-5x)(3x-7)<0, tập nghiệm của bất phương trình là:S={x |−13<x<65−13<x<65}S={x| x>73x>73 }S={x| −13≤x≤65−13≤x≤65 hoặc x>73x>73 }S={x| −13<x<65−13<x<65 hoặc x>73x>73 }Câu 3 Mã: 78314Tập nghiệm của bất phương trình tích (x+3)(x-7)S={x\-3 < x...
Đọc tiếp

Câu 1 Mã: 78331

Giải bất phương trình 2x+1x+2≤12x+1x+2≤1

−2≤x≤−1−2≤x≤−1

−2≤x<1−2≤x<1

−2<x≤1−2<x≤1

Vô nghiệm

Câu 2 Mã: 78319

Bất phương trình (3x+1)(6-5x)(3x-7)<0, tập nghiệm của bất phương trình là:

S={x |−13<x<65−13<x<65}

S={x| x>73x>73 }

S={x| −13≤x≤65−13≤x≤65 hoặc x>73x>73 }

S={x| −13<x<65−13<x<65 hoặc x>73x>73 }

Câu 3 Mã: 78314

Tập nghiệm của bất phương trình tích (x+3)(x-7)

S={x\-3 < x hoặc x < 7}

S={x\-3 < x < 7}

S={x\-3 > x > 7}

S={-3;7}

Câu 4 Mã: 78328

Giải bất phương trình: 3xx−3>3x−1x−33xx−3>3x−1x−3

x>−3x>−3

x≥−3x≥−3

x>3x>3

x≥3x≥3

Câu 5 Mã: 78330

Giải bất phương trình: 1x+4≤1x−21x+4≤1x−2

x≥2x≥2

x≤−4x≤−4

x≥2x≥2 hoặc x≤−4x≤−4

x≥2x≥2 vàx≤−4x≤−4

Câu 6 Mã: 78316

Bất phương trình (2x-3)(x22+1)≤0≤0. Tập nghiệm của bất phương trình là:

S={x\x≤32≤32}

S={x\x≥32≥32}

S={x\x<32<32}

Đáp án khác

Câu 7 Mã: 78332

Số nghiệm nguyên thỏa mãn bất phương trình (x+5)(7−2x)>0(x+5)(7−2x)>0

8

7

9

10

Câu 8 Mã: 78321

Tìm x sao cho (x-2)(x-5)>0

x>5 và x<2

x>2

x>5 hoặc x<2

x>5

Câu 9 Mã: 78327

Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình: x−3x+5+x+5x−3<2x−3x+5+x+5x−3<2

4

5

3

6

Câu 10 Mã: 78315

Cho bất phương trình -2x22+11x-15>0. Giá trị  x nguyên thỏa mãn bất phương trình là:

x=3

x=2

x=-2

không có giá trị x nào thỏa mãn

Câu 11 Mã: 78318

Cho bất phương trình: (2x+3)(x+1)(3x+5)≥≥ 0, tập nghiệm của bất phương trình là:

S={x | −53≤x≤−32−53≤x≤−32}

S={x | x≥−1x≥−1}

S={x| −53≤x≤−32−53≤x≤−32 hoặc x≥−1x≥−1}

S={x| −53<x<−32−53<x<−32 hoặc x>−1x>−1}

Câu 12 Mã: 78322

Tìm x sao cho x+2x−5<0x+2x−5<0

−2<x<4−2<x<4

−2<x<5−2<x<5

x<5x<5

x>−2x>−2

Câu 13 Mã: 78326

Giải bất phương trình: 4x+32x+1<24x+32x+1<2

x=−12x=−12

x≠−12x≠−12

x>−12x>−12

x<−12x<−12

Câu 14 Mã: 78313

Tập nghiệm của bất phương trình (x-1)(x+2)>0 là:

S={x/x<1 hoặc x>-2}

S={x/x<-2 hoặc x>1}

S={x/x>1 hoặc x<-2}

S={x/x>-2 hoặc x<1}

Câu 15 Mã: 78320

Bất phương trình (2x+1)(x2−4)>0(2x+1)(x2−4)>0  có tập nghiệm là:

S={x| -2 < x < −12−12 hoặc x>2}

S={x | -2 < x < −12−12 hoặc x≥≥ 2}

S={x | -2≤≤ x < −12−12 hoặc x>2}

S={x | -2 < x < −12−12 hoặc x=2}

Câu 16 Mã: 78329

Giải bất phương trình sau: 3x−4x+2≥03x−4x+2≥0

2<x<122<x<12

−12≤x≤−2−12≤x≤−2

x≤−2x≤−2

2≤x≤122≤x≤12

Câu 17 Mã: 78317

Cho bất phương trình:x2−4x+4≤0x2−4x+4≤0 , tập nghiệm của bất phương trình là:

S={x\x≤≤ 2}

S={2}

S={x\x< 2}

Đáp án khác

Câu 18 Mã: 78325

Tìm nghiệm nguyên dương của bất phương trình:

x2−2x−4(x+1)(x−3)>1x2−2x−4(x+1)(x−3)>1  (1)

x∈{1}x∈{1}

x∈{2}x∈{2}

x∈{1;2}x∈{1;2}

Vô nghiệm

Câu 19 Mã: 78324

Giải bất phương trình: (x−4)(9−x)≥0(x−4)(9−x)≥0

x≥4x≥4

x<9x<9

4≤x≤94≤x≤9

Vô nghiệm

Câu 20 Mã: 78323

Bất phương trình x2−2x+1<9x2−2x+1<9

−2<x<4−2<x<4

−2≤x<4−2≤x<4

−2<x<6−2<x<6

−2<x≤6

0
NV
5 tháng 5 2021

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

30 tháng 4 2021

3x2 - 12x - |x - 2| > 12

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)

31 tháng 1 2017

Chọn B

15 tháng 2 2018

Làm hai vế của bất phương trình đầu vô nghĩa nên x = -7 không là nghiệm của bất phương trình đó. Mặt khác, x = -7 thỏa mãn bất phương trình sau nên x = -7 là nghiệm của bất phương trình này.

    Nhận xét: Phép giản ước số hạng  - 1 x + 7  ở hai vế của bất phương trình đầu làm mở rộng tập xác định của bất phương trình đó, vì vậy có thể dẫn đến nghiệm ngoại lai.

5 tháng 7 2017

11 tháng 4 2021

\(5-2x\ge0\)

\(\Leftrightarrow5\ge2x\)

\(\Leftrightarrow x\le\dfrac{5}{2}\)

\(S=\left\{x|x\le\dfrac{5}{2}\right\}\)

=> B

NV
21 tháng 3 2022

\(\dfrac{x^2+x+3}{x^2-4}\ge1\Leftrightarrow\dfrac{x^2+x+3}{x^2-4}-1\ge0\)

\(\Leftrightarrow\dfrac{x+7}{x^2-4}\ge0\Rightarrow\left[{}\begin{matrix}-7\le x< -2\\x>2\end{matrix}\right.\)

\(\Rightarrow S\cap\left(-2;2\right)=\varnothing\)