K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: Xét ΔABC có

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

20 tháng 12 2015

a,Ta có: FA=FC=AC:2(gt)

          EC=EB=BC:2(gt)

=>FE là đường TB của tam giác ABC => EF//AD

CMTT: DE//FA

=> ADEF là hình bình hành

b,ADEF LÀ HÌNH thoi => AF = AD

=> AC=AB =>ABC là tam giác cân

Vậy đấy dễ mà tick cko mk nha!!!

3 tháng 11 2021

a.

Xét tam giác ABC có

AF = FC

BE = EC

=>FE là đường trung bình của tam giác ABC ( tính chất )

=> FE // AB mà D thuộc AB nên FE // AD (1)

Xét tiếp tam giác ABC có

DB = AD

BE = EC

=> DE là đường trung bình của tam giác ABC ( tính chất )

=> DE // AC mà F thuộc AC nên DE // AF (2)

Từ (1) và (2) => Tứ Giác ADEF là hình bình hành ( dấu hiệu ) ( đpcm)

b.

Để Tứ Giác ADEF là hình chữ nhật thì góc DAE = 90 độ ( hay góc BAC = 90 độ ) DE và EF phải lần lượt là trung trực của AB và AC, DE và EF phải giao nhau tại trung điểm của BC ( là điểm E )

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

17 tháng 12 2021

a) ΔABC có FB=FC ( gt)

                EA=EC ( gt)

Suy ra FE là đường trung bình của ΔABC

b) Ta có: FE=1/2 AB và FE//AB ( FE là đường trung bình của ΔABC)

mà AD cũng =1/2 AB. suy ra FE=AD (1)

có AD∈AB mà FE//AB. suy ra FE//AD (2)

Từ (1) và (2) ➜ DAEF là hình bình hành

Bạn tự vẽ hình nha, sorry vì mình biet nhiu đó 

25 tháng 10 2017

A B C H D E F

a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF

=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.

b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD

=> Tam giác DBH cân tại D.

c) Điểm G ở đâu hả bạn?

23 tháng 10 2017

a. Xét ∆AHB vuông tại H có HM là đường 

đường trung tuyến ( gt ) nên HM =

2AB( 1 ) 

Trong ∆ABC có N là trung điểm của AC ( gt ) O

và K là trung điểm của BC ( gt ) nên NK là 

đường trung bình của ∆ABC → NK = 2AB(  2 ) B H K C

Từ ( 1 ) & ( 2 ) → HM = NK I

b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )

+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là 

đường trung bình của ∆ABC → MK = AC ( 4)

Từ ( 3 ) & ( 4 ) → HN = 2MK (a)

+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là 

đường trung bình của ∆ABC → MN // BC hay MN // KH 

→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.

   Bài 3.   Cho tam giác ABC. Gọi D,E, F lần lượt là trung điểm của các cạnh AB, BC, AC.      a) Biết BC = 6 cm, tính độ dài DF ?             b) Chứng minh tứ giac BDFE là hình bình hành.           c/ Chứng minh DE = FC  Bài 4: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, BC. Lấy điểm D đối xứng    với N qua M.      a/ Biết AC = 12cm Tính độ dài đoạn thẳng  MN ?      b/Tứ giác AMNC là hình gì? Vì sao?      c/ Tứ giác...
Đọc tiếp

   Bài 3.   Cho tam giác ABC. Gọi D,E, F lần lượt là trung điểm của các cạnh AB, BC, AC.

      a) Biết BC = 6 cm, tính độ dài DF ?       

      b) Chứng minh tứ giac BDFE là hình bình hành.           c/ Chứng minh DE = FC

  Bài 4: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, BC. Lấy điểm D đối xứng

    với N qua M.

      a/ Biết AC = 12cm Tính độ dài đoạn thẳng  MN ?

      b/Tứ giác AMNC là hình gì? Vì sao?

      c/ Tứ giác ADBN là hình gì? Vì sao?

  Bài 5: Cho tam giác ABC , Gọi I, K, H lần lượt là trung điểm của AB, AC, BC.

      a/ Chứng minh IK là đường trung bình của tam giác ABC

      b/ Biết IK = 7cm, tính BC.      

      c/ Chứng minh tứ giác BIKH là hình bình hành

giúp mik vs mik cần gấp

 

 

0
1 tháng 12 2016

Bài 1 : Ta có MB = MC ( gt) , ME // AC => E là trung điểm của AB ( đường thẳng qua trung điểm cạnh tam giác . . )

MB = MC ( gt) , MF // AB ⇒ F là trung điểm của AC ( đường thẳng qua trung điểm cạnh tam giác . . . )

⇒ EF là đường trung bình của tam giác ABC . ⇒ EF // BC Vậy tứ giác BCEF là hình thang

. Mặt khác góc B = góc C ( tam giác ABC cân – gt) ⇒ Tứ giác BCEF là hình thang cân.

Bài 2: a/ chứng minh tứ giác có 2 cặp cạnh đối song song ( gt) nên AEGF là hình bình hành.

tứ giác có góc A = 900 ( gt)

Vậy AEGF là hình chữ nhật

b/ vì GF // AB ⇒ FI // EB

EI // BF (gt) ⇒ BEIF là hình bình hành ( 2 cặp cạnh đối // )

c/ Vì AF = FC , GB = GC ( gt) ⇒ GF là đường trung bình của tam giác ABC ⇒ GF = BE = 1/2 AB ⇒ GF = FI ( vì FI = BE do BEIF là hình bình hành)

⇒ GF // AB mà AB ⊥ AC ⇒ GI ⊥ AC tại F

Vậy AGCI là hình thoi ( hai đ/chéo vuông góc tại trung điểm mỗi đường )

d/ Để AGCI là hình vuông thì AC = GI . mà GI = 2GF = 2 EB = AB Vậy AGCI là hình vuông thì AC = AB ⇒ Tam giác ABC vuông cân tại A.