K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

ΔABC có AB ≤ AC ⇒ ∠C ≤ ∠B.

ΔABM có ∠M1 là góc ngoài nên ∠M1 > ∠B

⇒ ∠M1 > ∠C

ΔAMC có ∠M1 > ∠C ⇒ AC > AM.

Sửa đề: AB>=AC

Ta có: \(\widehat{AMB}+\widehat{AMC}=180^0\)

nên \(\left[{}\begin{matrix}\widehat{AMB}>90^0\\\widehat{AMC}>=90^0\end{matrix}\right.\)

Nếu \(\widehat{AMC}>=90^0\) thì ΔAMC có cạnh AC là cạnh lớn nhất

nên AC>AM

Nếu \(\widehat{AMB}>90^0\) thì ΔABM có AB là cạnh lớn nhất

=>AB>AM

mà AB<AC
nên AM<AC

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Bạn tham khảo lời giải tại đây:

cho tam giác ABC , AB - Hoc24

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABM=ΔACM

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

=>KM\(\perp\)BC
Xét ΔKBC có

KM là đường cao

KM là đường trung tuyến

Do đó:ΔKBC cân tại K

=>KB=KC

c: ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

\(\widehat{ABF}+\widehat{FBC}=\widehat{ABC}\)

\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)

mà \(\widehat{FBC}=\widehat{ECB}\)

và \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABF}=\widehat{ACE}\)

=>\(\widehat{EBK}=\widehat{FCK}\)

Xét ΔEBK và ΔFCK có

\(\widehat{EBK}=\widehat{FCK}\)

BK=CK

\(\widehat{EKB}=\widehat{FKC}\)

Do đó: ΔEBK=ΔFCK

3 tháng 12 2023

Giup minh voi mn oi <Thank> 

24 tháng 2 2021

Giúp mk vs