Cho tam giác ABC biết 3 góc của tam giác lập thành một cấp số cộng và có góc nhỏ nhất bằng 25o. Tìm 2 góc còn lại?
A. 65o ; 90o
B. 75o ; 80o
C. 60o ; 95o
D. 55o; 100o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Ta có và tam giác ABC nhọn nên A = 45º.
A + B + C = 180 º ⇒ B + C = 180º - 45º = 135º
Do 3 góc tam giác lập thành cấp số cộng ; số đo góc A nhỏ nhất nên B = A + d; C = A + 2d.
Khi đó: B + C = A + d + A + 2d = 2A + 3d ⇒ 3d = 135º - 2.45º = 45º
⇒ d = 15º ⇒ B = A + d = 60º; C = A + 2d = 75º
Chọn D.
Ta có: B ≤ A ≤ C ≤ D nên A < 180º
Lại có tan A không xác định nên A = 90º
Do 4 góc tứ giác lập thành cấp số cộng và B ≤ A ≤ C ≤ D nên
B = 90 - d; C = 90 + d; D = 90 + 2d.
Ta có: A + B + C + D = 360 ⇒ 90 + 90 – d + 90 + d + 90 + 2d = 360
⇒ d = 0 ⇒ A = B = C = D = 90º.
Ta có ∠B = 180o - 35o - 65o = 80o
Vì góc A là góc nhỏ nhất nên cạnh BC nhỏ nhất. Chọn B
Chọn A
Gọi d=2a là công sai. Bốn số phải tìm là:
A=(x-3a); B=(x-a); C=(x+a); D=(x+3a). Ta có hệ phương trình:
Gọi d = 2a là công sai. Bốn số phải tìm là \(A=\left(x-3a\right);B=\left(x-a\right);C=\left(x+a\right);D=\left(x+3a\right)\)
Ta có hệ phương trình :
\(\begin{cases}\left(x-3a\right)+\left(x-a\right)+\left(x+a\right)+\left(x+3a\right)=360^0\\\left(x+3a\right)=5\left(x-3a\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x=90^0\\a=20^0\end{cases}\)
Bốn góc phải tìm là : \(A=30^0;B=70^0;C=110^0;D=150^0\)
Chọn C
Gọi số đo ba góc ba góc lập thành cấp số cộng là 25; 25+ d ; 25 +2d có công sai d.
Tổng ba góc trong một tam giác bằng 1800 nên :
u 1 + u 2 + u 3 = 180 ⇔ 25 + 25 + d + 25 + 2 d = 180 ⇔ 3 d = 105 ⇔ d = 35 .
Vâỵ
u 2 = 25 + 35 = 60 ; u 3 = 25 + 2 . 35 = 95.