K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

Đáp án D

52; 54; 56; 58 được lập từ các chữ số 5; 2; 4; 6; 8

9 tháng 2 2017

13 tháng 6 2023

\(a,A=\left\{100;110;130;310;300;160;360;600;630;610\right\}\)

\(b,B=\left\{360;630;603;306\right\}\)

\(c,C=A\cap B=\left\{360;630\right\}\)

Gọi \(S=\left\{\overline{abc}\right\}\)

a có 5 cách chọn

b có 5 cách chọn

c có 4 cách chọn

=>S có 5*5*4=100 số

Gọi \(\overline{abc}\) là số chia hết cho 5

TH1: c=5

=>a có 4 cách và b có 4 cách

=>Có 16 cách

TH2: c=0

=>a có 5 cách và b có 4 cách

=>Có 5+4=20 cách

=>Có 16+20=36(cách)

\(n\left(\Omega\right)=C^2_{100}\)

\(n\left(B\right)=C^2_{36}\)

=>\(P\left(B\right)=\dfrac{7}{55}\)

4 tháng 10 2017

Tập S có 9 4  phần tử. Ta có 

Thật vậy: Gọi số thỏa mãn biến cố là 

30 tháng 3 2017

Đáp án là B

17 tháng 3 2018

Chọn A

Số phần tử của A là A 9 4 = 3024 số. 

Số phần tử của không gian mẫu là  n ( Ω ) = 3024

Gọi A là biến cố: “Chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11”.

Xét số tự nhiên có 4 chữ số có dạng 

Theo bài ra ta có: và 

Suy ra 

Trong các chữ số 1;2;3;4;5;6;7;8;9 có các bộ số mà tổng chia hết cho 11 là  

Chọn 2 cặp trong 4 cặp số trên để tạo số 

Chọn {a;c} có 4 cách, chọn {b;d} có 3 cách, sau đó sắp thứ tự các số a, b, c, d. Ta được 4.3.2.2 = 48

Suy ra n(A) = 48

NV
27 tháng 12 2020

Gọi số đó là \(\overline{abc}\)

Không gian mẫu: \(6.6.5=180\)

a. TH1: \(c=0\Rightarrow ab\) có \(A_6^2\) cách

TH2: \(c\ne0\Rightarrow c\) có 3 cách chọn, ab có \(5.5=25\) cách

Xác suất: \(P=\dfrac{3.25+A_6^2}{180}=\)

b. Tổng 3 chữ số chia hết cho 3 khi 3 số đồng dư khi chia 3 hoặc 3 số đôi một khác số dư khi chia 3.

- 3 số đồng dư khi chia cho 3: \(3!-2!=4\) số

- 3 số chia 3 có 3 số dư khác nhau: 

+ Không có mặt số 0: \(C_2^1C_2^1C_2^1.3!=48\)

+ Có mặt số 0: \(C_2^1C_2^1C_2^1\left(3!-2!\right)=32\)

Xác suất: \(P=\dfrac{4+48+32}{180}=...\)

27 tháng 12 2020

Cho em hỏi ở TH1 của câu a, khi c = 0, ab có sắp thứ tự nên phải là \(A^2_6\) cách chứ đúng không ạ...