K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

13 tháng 12 2020

C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi

NV
23 tháng 10 2020

\(\left(2x-1\right)^6\left(3x^2+1\right)^5=\sum\limits^6_{k=0}C_6^k\left(2x\right)^k\left(-1\right)^{6-k}\sum\limits^5_{i=0}C_5^i\left(3x^2\right)^i\)

\(=\sum\limits^6_{k=0}\sum\limits^5_{i=0}C_6^k.C_5^i.\left(-1\right)^{6-k}.2^k.3^i.x^{k+2i}\)

Số hạng chứa \(x^4\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le k\le6\\0\le i\le5\\k+2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(1;2\right);\left(2;0\right)\)

Hệ số:

\(C_6^4.C_5^0\left(-1\right)^4.2^4.3^0+C_6^2C_5^1\left(-1\right)^2.2^2.3^1+C_6^0.C_5^2.\left(-1\right)^0.2^0.3^2=...\)

18 tháng 12 2021

Cái này tui chưa học đâu nha bạn iu

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810

SHTQ là: \(C^k_4\cdot\left(2x\right)^{4-k}\cdot\left(-\dfrac{1}{x^2}\right)^k=C^k_4\cdot2^{4-k}\cdot\left(-1\right)^k\cdot x^{4-3k}\)

Số hạng chứa 1/x^2 tương ứng với 4-3k=-2

=>3k=6

=>k=2

=>Số hạng đó là: 24/x^2

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

Theo khai triển Newton thì:

\((3x^2+x+1)^{10}=\sum \limits_{k=0}^{10}C^k_{10}(3x^2)^{10-k}(x+1)^k=\sum\limits_{k=0}^{10}[C^k_{10}(3x^2)^{10-k}\sum \limits_{p=0}^kC^p_kx^p]\)

Để tìm hệ số của $x^4$ ta cần tìm $p,k$ sao cho:

$0\leq p\leq k\leq 10$ và $2(10-k)+p=4$

Dễ dàng tìm được $(k,p)=(8,0), (9,2), (10,4)$

Do đó, hệ số của $x^4$ là"

$3^2.C^8_{10}.C^{0}_8+3C^9_{10}.C^2_9+C^{10}_{10}.C^4_{10}=1695$

NV
18 tháng 12 2020

Khai triển \(\left(2x^3-\dfrac{1}{4}x^{-2}\right)^{40}\) có số hạng tổng quát:

\(C_{40}^k\left(2x^3\right)^k\left(\dfrac{1}{4}\right)^{40-k}.\left(x^{-2}\right)^{40-k}=C_{40}^k2^k.4^{k-40}.x^{5k-80}\)

Số hạng chứa\(x^{15}\Rightarrow5k-80=15\Leftrightarrow k=19\)

Số hạng đó là: \(C_{40}^{19}2^{19}.4^{-21}x^{15}=C_{40}^{19}.\dfrac{1}{2^{23}}.x^{15}\)